#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric
import h2o
[docs]class H2ODeepWaterEstimator(H2OEstimator):
    """
    Deep Water
    Build a Deep Learning model using multiple native GPU backends
    Builds a deep neural network on an H2OFrame containing various data sources
    """
    algo = "deepwater"
    param_names = {"model_id", "checkpoint", "autoencoder", "training_frame", "validation_frame", "nfolds",
                   "balance_classes", "max_after_balance_size", "class_sampling_factors",
                   "keep_cross_validation_models", "keep_cross_validation_predictions",
                   "keep_cross_validation_fold_assignment", "fold_assignment", "fold_column", "response_column",
                   "offset_column", "weights_column", "ignored_columns", "score_each_iteration", "categorical_encoding",
                   "overwrite_with_best_model", "epochs", "train_samples_per_iteration", "target_ratio_comm_to_comp",
                   "seed", "standardize", "learning_rate", "learning_rate_annealing", "momentum_start", "momentum_ramp",
                   "momentum_stable", "distribution", "score_interval", "score_training_samples",
                   "score_validation_samples", "score_duty_cycle", "classification_stop", "regression_stop",
                   "stopping_rounds", "stopping_metric", "stopping_tolerance", "max_runtime_secs", "ignore_const_cols",
                   "shuffle_training_data", "mini_batch_size", "clip_gradient", "network", "backend", "image_shape",
                   "channels", "sparse", "gpu", "device_id", "cache_data", "network_definition_file",
                   "network_parameters_file", "mean_image_file", "export_native_parameters_prefix", "activation",
                   "hidden", "input_dropout_ratio", "hidden_dropout_ratios", "problem_type", "export_checkpoints_dir"}
    def __init__(self, **kwargs):
        super(H2ODeepWaterEstimator, self).__init__()
        self._parms = {}
        for pname, pvalue in kwargs.items():
            if pname == 'model_id':
                self._id = pvalue
                self._parms["model_id"] = pvalue
            elif pname in self.param_names:
                # Using setattr(...) will invoke type-checking of the arguments
                setattr(self, pname, pvalue)
            else:
                raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue))
    @property
    def checkpoint(self):
        """
        Model checkpoint to resume training with.
        Type: ``str``.
        """
        return self._parms.get("checkpoint")
    @checkpoint.setter
    def checkpoint(self, checkpoint):
        assert_is_type(checkpoint, None, str, H2OEstimator)
        self._parms["checkpoint"] = checkpoint
    @property
    def autoencoder(self):
        """
        Auto-Encoder.
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("autoencoder")
    @autoencoder.setter
    def autoencoder(self, autoencoder):
        assert_is_type(autoencoder, None, bool)
        self._parms["autoencoder"] = autoencoder
    @property
    def training_frame(self):
        """
        Id of the training data frame.
        Type: ``H2OFrame``.
        """
        return self._parms.get("training_frame")
    @training_frame.setter
    def training_frame(self, training_frame):
        self._parms["training_frame"] = H2OFrame._validate(training_frame, 'training_frame')
    @property
    def validation_frame(self):
        """
        Id of the validation data frame.
        Type: ``H2OFrame``.
        """
        return self._parms.get("validation_frame")
    @validation_frame.setter
    def validation_frame(self, validation_frame):
        self._parms["validation_frame"] = H2OFrame._validate(validation_frame, 'validation_frame')
    @property
    def nfolds(self):
        """
        Number of folds for K-fold cross-validation (0 to disable or >= 2).
        Type: ``int``  (default: ``0``).
        """
        return self._parms.get("nfolds")
    @nfolds.setter
    def nfolds(self, nfolds):
        assert_is_type(nfolds, None, int)
        self._parms["nfolds"] = nfolds
    @property
    def balance_classes(self):
        """
        Balance training data class counts via over/under-sampling (for imbalanced data).
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("balance_classes")
    @balance_classes.setter
    def balance_classes(self, balance_classes):
        assert_is_type(balance_classes, None, bool)
        self._parms["balance_classes"] = balance_classes
    @property
    def max_after_balance_size(self):
        """
        Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires
        balance_classes.
        Type: ``float``  (default: ``5``).
        """
        return self._parms.get("max_after_balance_size")
    @max_after_balance_size.setter
    def max_after_balance_size(self, max_after_balance_size):
        assert_is_type(max_after_balance_size, None, float)
        self._parms["max_after_balance_size"] = max_after_balance_size
    @property
    def class_sampling_factors(self):
        """
        Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will
        be automatically computed to obtain class balance during training. Requires balance_classes.
        Type: ``List[float]``.
        """
        return self._parms.get("class_sampling_factors")
    @class_sampling_factors.setter
    def class_sampling_factors(self, class_sampling_factors):
        assert_is_type(class_sampling_factors, None, [float])
        self._parms["class_sampling_factors"] = class_sampling_factors
    @property
    def keep_cross_validation_models(self):
        """
        Whether to keep the cross-validation models.
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("keep_cross_validation_models")
    @keep_cross_validation_models.setter
    def keep_cross_validation_models(self, keep_cross_validation_models):
        assert_is_type(keep_cross_validation_models, None, bool)
        self._parms["keep_cross_validation_models"] = keep_cross_validation_models
    @property
    def keep_cross_validation_predictions(self):
        """
        Whether to keep the predictions of the cross-validation models.
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("keep_cross_validation_predictions")
    @keep_cross_validation_predictions.setter
    def keep_cross_validation_predictions(self, keep_cross_validation_predictions):
        assert_is_type(keep_cross_validation_predictions, None, bool)
        self._parms["keep_cross_validation_predictions"] = keep_cross_validation_predictions
    @property
    def keep_cross_validation_fold_assignment(self):
        """
        Whether to keep the cross-validation fold assignment.
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("keep_cross_validation_fold_assignment")
    @keep_cross_validation_fold_assignment.setter
    def keep_cross_validation_fold_assignment(self, keep_cross_validation_fold_assignment):
        assert_is_type(keep_cross_validation_fold_assignment, None, bool)
        self._parms["keep_cross_validation_fold_assignment"] = keep_cross_validation_fold_assignment
    @property
    def fold_assignment(self):
        """
        Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify
        the folds based on the response variable, for classification problems.
        One of: ``"auto"``, ``"random"``, ``"modulo"``, ``"stratified"``  (default: ``"auto"``).
        """
        return self._parms.get("fold_assignment")
    @fold_assignment.setter
    def fold_assignment(self, fold_assignment):
        assert_is_type(fold_assignment, None, Enum("auto", "random", "modulo", "stratified"))
        self._parms["fold_assignment"] = fold_assignment
    @property
    def fold_column(self):
        """
        Column with cross-validation fold index assignment per observation.
        Type: ``str``.
        """
        return self._parms.get("fold_column")
    @fold_column.setter
    def fold_column(self, fold_column):
        assert_is_type(fold_column, None, str)
        self._parms["fold_column"] = fold_column
    @property
    def response_column(self):
        """
        Response variable column.
        Type: ``str``.
        """
        return self._parms.get("response_column")
    @response_column.setter
    def response_column(self, response_column):
        assert_is_type(response_column, None, str)
        self._parms["response_column"] = response_column
    @property
    def offset_column(self):
        """
        Offset column. This will be added to the combination of columns before applying the link function.
        Type: ``str``.
        """
        return self._parms.get("offset_column")
    @offset_column.setter
    def offset_column(self, offset_column):
        assert_is_type(offset_column, None, str)
        self._parms["offset_column"] = offset_column
    @property
    def weights_column(self):
        """
        Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the
        dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative
        weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data
        frame. This is typically the number of times a row is repeated, but non-integer values are supported as well.
        During training, rows with higher weights matter more, due to the larger loss function pre-factor.
        Type: ``str``.
        """
        return self._parms.get("weights_column")
    @weights_column.setter
    def weights_column(self, weights_column):
        assert_is_type(weights_column, None, str)
        self._parms["weights_column"] = weights_column
    @property
    def ignored_columns(self):
        """
        Names of columns to ignore for training.
        Type: ``List[str]``.
        """
        return self._parms.get("ignored_columns")
    @ignored_columns.setter
    def ignored_columns(self, ignored_columns):
        assert_is_type(ignored_columns, None, [str])
        self._parms["ignored_columns"] = ignored_columns
    @property
    def score_each_iteration(self):
        """
        Whether to score during each iteration of model training.
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("score_each_iteration")
    @score_each_iteration.setter
    def score_each_iteration(self, score_each_iteration):
        assert_is_type(score_each_iteration, None, bool)
        self._parms["score_each_iteration"] = score_each_iteration
    @property
    def categorical_encoding(self):
        """
        Encoding scheme for categorical features
        One of: ``"auto"``, ``"enum"``, ``"one_hot_internal"``, ``"one_hot_explicit"``, ``"binary"``, ``"eigen"``,
        ``"label_encoder"``, ``"sort_by_response"``, ``"enum_limited"``  (default: ``"auto"``).
        """
        return self._parms.get("categorical_encoding")
    @categorical_encoding.setter
    def categorical_encoding(self, categorical_encoding):
        assert_is_type(categorical_encoding, None, Enum("auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder", "sort_by_response", "enum_limited"))
        self._parms["categorical_encoding"] = categorical_encoding
    @property
    def overwrite_with_best_model(self):
        """
        If enabled, override the final model with the best model found during training.
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("overwrite_with_best_model")
    @overwrite_with_best_model.setter
    def overwrite_with_best_model(self, overwrite_with_best_model):
        assert_is_type(overwrite_with_best_model, None, bool)
        self._parms["overwrite_with_best_model"] = overwrite_with_best_model
    @property
    def epochs(self):
        """
        How many times the dataset should be iterated (streamed), can be fractional.
        Type: ``float``  (default: ``10``).
        """
        return self._parms.get("epochs")
    @epochs.setter
    def epochs(self, epochs):
        assert_is_type(epochs, None, numeric)
        self._parms["epochs"] = epochs
    @property
    def train_samples_per_iteration(self):
        """
        Number of training samples (globally) per MapReduce iteration. Special values are 0: one epoch, -1: all
        available data (e.g., replicated training data), -2: automatic.
        Type: ``int``  (default: ``-2``).
        """
        return self._parms.get("train_samples_per_iteration")
    @train_samples_per_iteration.setter
    def train_samples_per_iteration(self, train_samples_per_iteration):
        assert_is_type(train_samples_per_iteration, None, int)
        self._parms["train_samples_per_iteration"] = train_samples_per_iteration
    @property
    def target_ratio_comm_to_comp(self):
        """
        Target ratio of communication overhead to computation. Only for multi-node operation and
        train_samples_per_iteration = -2 (auto-tuning).
        Type: ``float``  (default: ``0.05``).
        """
        return self._parms.get("target_ratio_comm_to_comp")
    @target_ratio_comm_to_comp.setter
    def target_ratio_comm_to_comp(self, target_ratio_comm_to_comp):
        assert_is_type(target_ratio_comm_to_comp, None, numeric)
        self._parms["target_ratio_comm_to_comp"] = target_ratio_comm_to_comp
    @property
    def seed(self):
        """
        Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded.
        Type: ``int``  (default: ``-1``).
        """
        return self._parms.get("seed")
    @seed.setter
    def seed(self, seed):
        assert_is_type(seed, None, int)
        self._parms["seed"] = seed
    @property
    def standardize(self):
        """
        If enabled, automatically standardize the data. If disabled, the user must provide properly scaled input data.
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("standardize")
    @standardize.setter
    def standardize(self, standardize):
        assert_is_type(standardize, None, bool)
        self._parms["standardize"] = standardize
    @property
    def learning_rate(self):
        """
        Learning rate (higher => less stable, lower => slower convergence).
        Type: ``float``  (default: ``0.001``).
        """
        return self._parms.get("learning_rate")
    @learning_rate.setter
    def learning_rate(self, learning_rate):
        assert_is_type(learning_rate, None, numeric)
        self._parms["learning_rate"] = learning_rate
    @property
    def learning_rate_annealing(self):
        """
        Learning rate annealing: rate / (1 + rate_annealing * samples).
        Type: ``float``  (default: ``1e-06``).
        """
        return self._parms.get("learning_rate_annealing")
    @learning_rate_annealing.setter
    def learning_rate_annealing(self, learning_rate_annealing):
        assert_is_type(learning_rate_annealing, None, numeric)
        self._parms["learning_rate_annealing"] = learning_rate_annealing
    @property
    def momentum_start(self):
        """
        Initial momentum at the beginning of training (try 0.5).
        Type: ``float``  (default: ``0.9``).
        """
        return self._parms.get("momentum_start")
    @momentum_start.setter
    def momentum_start(self, momentum_start):
        assert_is_type(momentum_start, None, numeric)
        self._parms["momentum_start"] = momentum_start
    @property
    def momentum_ramp(self):
        """
        Number of training samples for which momentum increases.
        Type: ``float``  (default: ``10000``).
        """
        return self._parms.get("momentum_ramp")
    @momentum_ramp.setter
    def momentum_ramp(self, momentum_ramp):
        assert_is_type(momentum_ramp, None, numeric)
        self._parms["momentum_ramp"] = momentum_ramp
    @property
    def momentum_stable(self):
        """
        Final momentum after the ramp is over (try 0.99).
        Type: ``float``  (default: ``0.9``).
        """
        return self._parms.get("momentum_stable")
    @momentum_stable.setter
    def momentum_stable(self, momentum_stable):
        assert_is_type(momentum_stable, None, numeric)
        self._parms["momentum_stable"] = momentum_stable
    @property
    def distribution(self):
        """
        Distribution function
        One of: ``"auto"``, ``"bernoulli"``, ``"multinomial"``, ``"gaussian"``, ``"poisson"``, ``"gamma"``,
        ``"tweedie"``, ``"laplace"``, ``"quantile"``, ``"huber"``  (default: ``"auto"``).
        """
        return self._parms.get("distribution")
    @distribution.setter
    def distribution(self, distribution):
        assert_is_type(distribution, None, Enum("auto", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber"))
        self._parms["distribution"] = distribution
    @property
    def score_interval(self):
        """
        Shortest time interval (in seconds) between model scoring.
        Type: ``float``  (default: ``5``).
        """
        return self._parms.get("score_interval")
    @score_interval.setter
    def score_interval(self, score_interval):
        assert_is_type(score_interval, None, numeric)
        self._parms["score_interval"] = score_interval
    @property
    def score_training_samples(self):
        """
        Number of training set samples for scoring (0 for all).
        Type: ``int``  (default: ``10000``).
        """
        return self._parms.get("score_training_samples")
    @score_training_samples.setter
    def score_training_samples(self, score_training_samples):
        assert_is_type(score_training_samples, None, int)
        self._parms["score_training_samples"] = score_training_samples
    @property
    def score_validation_samples(self):
        """
        Number of validation set samples for scoring (0 for all).
        Type: ``int``  (default: ``0``).
        """
        return self._parms.get("score_validation_samples")
    @score_validation_samples.setter
    def score_validation_samples(self, score_validation_samples):
        assert_is_type(score_validation_samples, None, int)
        self._parms["score_validation_samples"] = score_validation_samples
    @property
    def score_duty_cycle(self):
        """
        Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring).
        Type: ``float``  (default: ``0.1``).
        """
        return self._parms.get("score_duty_cycle")
    @score_duty_cycle.setter
    def score_duty_cycle(self, score_duty_cycle):
        assert_is_type(score_duty_cycle, None, numeric)
        self._parms["score_duty_cycle"] = score_duty_cycle
    @property
    def classification_stop(self):
        """
        Stopping criterion for classification error fraction on training data (-1 to disable).
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("classification_stop")
    @classification_stop.setter
    def classification_stop(self, classification_stop):
        assert_is_type(classification_stop, None, numeric)
        self._parms["classification_stop"] = classification_stop
    @property
    def regression_stop(self):
        """
        Stopping criterion for regression error (MSE) on training data (-1 to disable).
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("regression_stop")
    @regression_stop.setter
    def regression_stop(self, regression_stop):
        assert_is_type(regression_stop, None, numeric)
        self._parms["regression_stop"] = regression_stop
    @property
    def stopping_rounds(self):
        """
        Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the
        stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable)
        Type: ``int``  (default: ``5``).
        """
        return self._parms.get("stopping_rounds")
    @stopping_rounds.setter
    def stopping_rounds(self, stopping_rounds):
        assert_is_type(stopping_rounds, None, int)
        self._parms["stopping_rounds"] = stopping_rounds
    @property
    def stopping_metric(self):
        """
        Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anonomaly_score
        for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python
        client.
        One of: ``"auto"``, ``"deviance"``, ``"logloss"``, ``"mse"``, ``"rmse"``, ``"mae"``, ``"rmsle"``, ``"auc"``,
        ``"aucpr"``, ``"lift_top_group"``, ``"misclassification"``, ``"mean_per_class_error"``, ``"custom"``,
        ``"custom_increasing"``  (default: ``"auto"``).
        """
        return self._parms.get("stopping_metric")
    @stopping_metric.setter
    def stopping_metric(self, stopping_metric):
        assert_is_type(stopping_metric, None, Enum("auto", "deviance", "logloss", "mse", "rmse", "mae", "rmsle", "auc", "aucpr", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing"))
        self._parms["stopping_metric"] = stopping_metric
    @property
    def stopping_tolerance(self):
        """
        Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much)
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("stopping_tolerance")
    @stopping_tolerance.setter
    def stopping_tolerance(self, stopping_tolerance):
        assert_is_type(stopping_tolerance, None, numeric)
        self._parms["stopping_tolerance"] = stopping_tolerance
    @property
    def max_runtime_secs(self):
        """
        Maximum allowed runtime in seconds for model training. Use 0 to disable.
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("max_runtime_secs")
    @max_runtime_secs.setter
    def max_runtime_secs(self, max_runtime_secs):
        assert_is_type(max_runtime_secs, None, numeric)
        self._parms["max_runtime_secs"] = max_runtime_secs
    @property
    def ignore_const_cols(self):
        """
        Ignore constant columns.
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("ignore_const_cols")
    @ignore_const_cols.setter
    def ignore_const_cols(self, ignore_const_cols):
        assert_is_type(ignore_const_cols, None, bool)
        self._parms["ignore_const_cols"] = ignore_const_cols
    @property
    def shuffle_training_data(self):
        """
        Enable global shuffling of training data.
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("shuffle_training_data")
    @shuffle_training_data.setter
    def shuffle_training_data(self, shuffle_training_data):
        assert_is_type(shuffle_training_data, None, bool)
        self._parms["shuffle_training_data"] = shuffle_training_data
    @property
    def mini_batch_size(self):
        """
        Mini-batch size (smaller leads to better fit, larger can speed up and generalize better).
        Type: ``int``  (default: ``32``).
        """
        return self._parms.get("mini_batch_size")
    @mini_batch_size.setter
    def mini_batch_size(self, mini_batch_size):
        assert_is_type(mini_batch_size, None, int)
        self._parms["mini_batch_size"] = mini_batch_size
    @property
    def clip_gradient(self):
        """
        Clip gradients once their absolute value is larger than this value.
        Type: ``float``  (default: ``10``).
        """
        return self._parms.get("clip_gradient")
    @clip_gradient.setter
    def clip_gradient(self, clip_gradient):
        assert_is_type(clip_gradient, None, numeric)
        self._parms["clip_gradient"] = clip_gradient
    @property
    def network(self):
        """
        Network architecture.
        One of: ``"auto"``, ``"user"``, ``"lenet"``, ``"alexnet"``, ``"vgg"``, ``"googlenet"``, ``"inception_bn"``,
        ``"resnet"``  (default: ``"auto"``).
        """
        return self._parms.get("network")
    @network.setter
    def network(self, network):
        assert_is_type(network, None, Enum("auto", "user", "lenet", "alexnet", "vgg", "googlenet", "inception_bn", "resnet"))
        self._parms["network"] = network
    @property
    def backend(self):
        """
        Deep Learning Backend.
        One of: ``"mxnet"``, ``"caffe"``, ``"tensorflow"``  (default: ``"mxnet"``).
        """
        return self._parms.get("backend")
    @backend.setter
    def backend(self, backend):
        assert_is_type(backend, None, Enum("mxnet", "caffe", "tensorflow"))
        self._parms["backend"] = backend
    @property
    def image_shape(self):
        """
        Width and height of image.
        Type: ``List[int]``  (default: ``[0, 0]``).
        """
        return self._parms.get("image_shape")
    @image_shape.setter
    def image_shape(self, image_shape):
        assert_is_type(image_shape, None, [int])
        self._parms["image_shape"] = image_shape
    @property
    def channels(self):
        """
        Number of (color) channels.
        Type: ``int``  (default: ``3``).
        """
        return self._parms.get("channels")
    @channels.setter
    def channels(self, channels):
        assert_is_type(channels, None, int)
        self._parms["channels"] = channels
    @property
    def sparse(self):
        """
        Sparse data handling (more efficient for data with lots of 0 values).
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("sparse")
    @sparse.setter
    def sparse(self, sparse):
        assert_is_type(sparse, None, bool)
        self._parms["sparse"] = sparse
    @property
    def gpu(self):
        """
        Whether to use a GPU (if available).
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("gpu")
    @gpu.setter
    def gpu(self, gpu):
        assert_is_type(gpu, None, bool)
        self._parms["gpu"] = gpu
    @property
    def device_id(self):
        """
        Device IDs (which GPUs to use).
        Type: ``List[int]``  (default: ``[0]``).
        """
        return self._parms.get("device_id")
    @device_id.setter
    def device_id(self, device_id):
        assert_is_type(device_id, None, [int])
        self._parms["device_id"] = device_id
    @property
    def cache_data(self):
        """
        Whether to cache the data in memory (automatically disabled if data size is too large).
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("cache_data")
    @cache_data.setter
    def cache_data(self, cache_data):
        assert_is_type(cache_data, None, bool)
        self._parms["cache_data"] = cache_data
    @property
    def network_definition_file(self):
        """
        Path of file containing network definition (graph, architecture).
        Type: ``str``.
        """
        return self._parms.get("network_definition_file")
    @network_definition_file.setter
    def network_definition_file(self, network_definition_file):
        assert_is_type(network_definition_file, None, str)
        self._parms["network_definition_file"] = network_definition_file
    @property
    def network_parameters_file(self):
        """
        Path of file containing network (initial) parameters (weights, biases).
        Type: ``str``.
        """
        return self._parms.get("network_parameters_file")
    @network_parameters_file.setter
    def network_parameters_file(self, network_parameters_file):
        assert_is_type(network_parameters_file, None, str)
        self._parms["network_parameters_file"] = network_parameters_file
    @property
    def mean_image_file(self):
        """
        Path of file containing the mean image data for data normalization.
        Type: ``str``.
        """
        return self._parms.get("mean_image_file")
    @mean_image_file.setter
    def mean_image_file(self, mean_image_file):
        assert_is_type(mean_image_file, None, str)
        self._parms["mean_image_file"] = mean_image_file
    @property
    def export_native_parameters_prefix(self):
        """
        Path (prefix) where to export the native model parameters after every iteration.
        Type: ``str``.
        """
        return self._parms.get("export_native_parameters_prefix")
    @export_native_parameters_prefix.setter
    def export_native_parameters_prefix(self, export_native_parameters_prefix):
        assert_is_type(export_native_parameters_prefix, None, str)
        self._parms["export_native_parameters_prefix"] = export_native_parameters_prefix
    @property
    def activation(self):
        """
        Activation function. Only used if no user-defined network architecture file is provided, and only for
        problem_type=dataset.
        One of: ``"rectifier"``, ``"tanh"``.
        """
        return self._parms.get("activation")
    @activation.setter
    def activation(self, activation):
        assert_is_type(activation, None, Enum("rectifier", "tanh"))
        self._parms["activation"] = activation
    @property
    def hidden(self):
        """
        Hidden layer sizes (e.g. [200, 200]). Only used if no user-defined network architecture file is provided, and
        only for problem_type=dataset.
        Type: ``List[int]``.
        """
        return self._parms.get("hidden")
    @hidden.setter
    def hidden(self, hidden):
        assert_is_type(hidden, None, [int])
        self._parms["hidden"] = hidden
    @property
    def input_dropout_ratio(self):
        """
        Input layer dropout ratio (can improve generalization, try 0.1 or 0.2).
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("input_dropout_ratio")
    @input_dropout_ratio.setter
    def input_dropout_ratio(self, input_dropout_ratio):
        assert_is_type(input_dropout_ratio, None, numeric)
        self._parms["input_dropout_ratio"] = input_dropout_ratio
    @property
    def hidden_dropout_ratios(self):
        """
        Hidden layer dropout ratios (can improve generalization), specify one value per hidden layer, defaults to 0.5.
        Type: ``List[float]``.
        """
        return self._parms.get("hidden_dropout_ratios")
    @hidden_dropout_ratios.setter
    def hidden_dropout_ratios(self, hidden_dropout_ratios):
        assert_is_type(hidden_dropout_ratios, None, [numeric])
        self._parms["hidden_dropout_ratios"] = hidden_dropout_ratios
    @property
    def problem_type(self):
        """
        Problem type, auto-detected by default. If set to image, the H2OFrame must contain a string column containing
        the path (URI or URL) to the images in the first column. If set to text, the H2OFrame must contain a string
        column containing the text in the first column. If set to dataset, Deep Water behaves just like any other H2O
        Model and builds a model on the provided H2OFrame (non-String columns).
        One of: ``"auto"``, ``"image"``, ``"dataset"``  (default: ``"auto"``).
        """
        return self._parms.get("problem_type")
    @problem_type.setter
    def problem_type(self, problem_type):
        assert_is_type(problem_type, None, Enum("auto", "image", "dataset"))
        self._parms["problem_type"] = problem_type
    @property
    def export_checkpoints_dir(self):
        """
        Automatically export generated models to this directory.
        Type: ``str``.
        """
        return self._parms.get("export_checkpoints_dir")
    @export_checkpoints_dir.setter
    def export_checkpoints_dir(self, export_checkpoints_dir):
        assert_is_type(export_checkpoints_dir, None, str)
        self._parms["export_checkpoints_dir"] = export_checkpoints_dir
[docs]    @staticmethod
    def available():
        """
        Ask the H2O server whether a Deep Water model can be built (depends on availability of native backends).
        :return: True if a deep water model can be built, or False otherwise.
        """
        builder_json = h2o.api("GET /3/ModelBuilders", data={"algo": "deepwater"})
        visibility = builder_json["model_builders"]["deepwater"]["visibility"]
        if visibility == "Experimental":
            print("Cannot build a Deep Water model - no backend found.")
            return False
        else:
            return True