theta
¶
Available in: GLM, GAM
Hyperparameter: no
Description¶
In GLM, negative binomial regression is a generalization of Poisson regression that loosens the restrictive assumption that the variance is equal to the mean. Instead, the variance of negative binomial regression is a function of its mean and parameter \(\theta\), the dispersion parameter.
The theta
parameter allows you to specify this dispersion value. This option must be > 0 and defaults to 1e-10. In addition, this option can only be used when family=negativebinomial
.
Refer to the Negative Binomial Models topic for more inforamtion on how the theta
value is used in negative binomial regression problems.
Example¶
library(h2o)
h2o.init()
# Import the Swedish motor insurance dataset
h2o_df = h2o.importFile("http://h2o-public-test-data.s3.amazonaws.com/smalldata/glm_test/Motor_insurance_sweden.txt")
# Set the predictor names and the response column
predictors <- c["Payment", "Insured", "Kilometres", "Zone", "Bonus", "Make"]
response <- "Claims"
# Train the model
negativebinomial.fit <- h2o.glm(x=predictors,
y=response,
training_frame=h2o_df,
family="negativebinomial",
link="identity",
theta=0.5)
import h2o
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
h2o.init()
# Import the Swedish motor insurance dataset
h2o_df = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/smalldata/glm_test/Motor_insurance_sweden.txt")
# Set the predictor names and the response column
predictors = ["Payment", "Insured", "Kilometres", "Zone", "Bonus", "Make"]
response = "Claims"
# Train your model
negativebinomial_fit = H2OGeneralizedLinearEstimator(family="negativebinomial",
link="identity",
theta=0.5)
negativebinomial_fit.train(x=predictors, y=response, training_frame=h2o_df)