Source code for h2o.estimators.random_forest

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals

from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric


[docs]class H2ORandomForestEstimator(H2OEstimator): """ Distributed Random Forest Builds a Distributed Random Forest (DRF) on a parsed dataset, for regression or classification. """ algo = "drf" param_names = {"model_id", "training_frame", "validation_frame", "nfolds", "keep_cross_validation_models", "keep_cross_validation_predictions", "keep_cross_validation_fold_assignment", "score_each_iteration", "score_tree_interval", "fold_assignment", "fold_column", "response_column", "ignored_columns", "ignore_const_cols", "offset_column", "weights_column", "balance_classes", "class_sampling_factors", "max_after_balance_size", "max_confusion_matrix_size", "max_hit_ratio_k", "ntrees", "max_depth", "min_rows", "nbins", "nbins_top_level", "nbins_cats", "r2_stopping", "stopping_rounds", "stopping_metric", "stopping_tolerance", "max_runtime_secs", "seed", "build_tree_one_node", "mtries", "sample_rate", "sample_rate_per_class", "binomial_double_trees", "checkpoint", "col_sample_rate_change_per_level", "col_sample_rate_per_tree", "min_split_improvement", "histogram_type", "categorical_encoding", "calibrate_model", "calibration_frame", "distribution", "custom_metric_func", "export_checkpoints_dir", "check_constant_response", "gainslift_bins"} def __init__(self, **kwargs): super(H2ORandomForestEstimator, self).__init__() self._parms = {} for pname, pvalue in kwargs.items(): if pname == 'model_id': self._id = pvalue self._parms["model_id"] = pvalue elif pname in self.param_names: # Using setattr(...) will invoke type-checking of the arguments setattr(self, pname, pvalue) else: raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue)) @property def training_frame(self): """ Id of the training data frame. Type: ``H2OFrame``. :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], ... seed=1234) >>> cars_drf = H2ORandomForestEstimator(seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.auc(valid=True) """ return self._parms.get("training_frame") @training_frame.setter def training_frame(self, training_frame): self._parms["training_frame"] = H2OFrame._validate(training_frame, 'training_frame') @property def validation_frame(self): """ Id of the validation data frame. Type: ``H2OFrame``. :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], ... seed=1234) >>> cars_drf = H2ORandomForestEstimator(seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.auc(valid=True) """ return self._parms.get("validation_frame") @validation_frame.setter def validation_frame(self, validation_frame): self._parms["validation_frame"] = H2OFrame._validate(validation_frame, 'validation_frame') @property def nfolds(self): """ Number of folds for K-fold cross-validation (0 to disable or >= 2). Type: ``int`` (default: ``0``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> folds = 5 >>> cars_drf = H2ORandomForestEstimator(nfolds=folds, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=cars) >>> cars_drf.auc(xval=True) """ return self._parms.get("nfolds") @nfolds.setter def nfolds(self, nfolds): assert_is_type(nfolds, None, int) self._parms["nfolds"] = nfolds @property def keep_cross_validation_models(self): """ Whether to keep the cross-validation models. Type: ``bool`` (default: ``True``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(keep_cross_validation_models=True, ... nfolds=5, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train) >>> cars_drf.auc() """ return self._parms.get("keep_cross_validation_models") @keep_cross_validation_models.setter def keep_cross_validation_models(self, keep_cross_validation_models): assert_is_type(keep_cross_validation_models, None, bool) self._parms["keep_cross_validation_models"] = keep_cross_validation_models @property def keep_cross_validation_predictions(self): """ Whether to keep the predictions of the cross-validation models. Type: ``bool`` (default: ``False``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(keep_cross_validation_predictions=True, ... nfolds=5, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train) >>> cars_drf.cross_validation_predictions() """ return self._parms.get("keep_cross_validation_predictions") @keep_cross_validation_predictions.setter def keep_cross_validation_predictions(self, keep_cross_validation_predictions): assert_is_type(keep_cross_validation_predictions, None, bool) self._parms["keep_cross_validation_predictions"] = keep_cross_validation_predictions @property def keep_cross_validation_fold_assignment(self): """ Whether to keep the cross-validation fold assignment. Type: ``bool`` (default: ``False``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(keep_cross_validation_fold_assignment=True, ... nfolds=5, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train) >>> cars_drf.cross_validation_fold_assignment() """ return self._parms.get("keep_cross_validation_fold_assignment") @keep_cross_validation_fold_assignment.setter def keep_cross_validation_fold_assignment(self, keep_cross_validation_fold_assignment): assert_is_type(keep_cross_validation_fold_assignment, None, bool) self._parms["keep_cross_validation_fold_assignment"] = keep_cross_validation_fold_assignment @property def score_each_iteration(self): """ Whether to score during each iteration of model training. Type: ``bool`` (default: ``False``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(score_each_iteration=True, ... ntrees=55, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame = valid) >>> cars_drf.scoring_history() """ return self._parms.get("score_each_iteration") @score_each_iteration.setter def score_each_iteration(self, score_each_iteration): assert_is_type(score_each_iteration, None, bool) self._parms["score_each_iteration"] = score_each_iteration @property def score_tree_interval(self): """ Score the model after every so many trees. Disabled if set to 0. Type: ``int`` (default: ``0``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(score_tree_interval=5, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.scoring_history() """ return self._parms.get("score_tree_interval") @score_tree_interval.setter def score_tree_interval(self, score_tree_interval): assert_is_type(score_tree_interval, None, int) self._parms["score_tree_interval"] = score_tree_interval @property def fold_assignment(self): """ Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based on the response variable, for classification problems. One of: ``"auto"``, ``"random"``, ``"modulo"``, ``"stratified"`` (default: ``"auto"``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> assignment_type = "Random" >>> cars_drf = H2ORandomForestEstimator(fold_assignment=assignment_type, ... nfolds=5, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=cars) >>> cars_drf.auc(xval=True) """ return self._parms.get("fold_assignment") @fold_assignment.setter def fold_assignment(self, fold_assignment): assert_is_type(fold_assignment, None, Enum("auto", "random", "modulo", "stratified")) self._parms["fold_assignment"] = fold_assignment @property def fold_column(self): """ Column with cross-validation fold index assignment per observation. Type: ``str``. :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> fold_numbers = cars.kfold_column(n_folds=5, seed=1234) >>> fold_numbers.set_names(["fold_numbers"]) >>> cars = cars.cbind(fold_numbers) >>> print(cars['fold_numbers']) >>> cars_drf = H2ORandomForestEstimator(seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=cars, ... fold_column="fold_numbers") >>> cars_drf.auc(xval=True) """ return self._parms.get("fold_column") @fold_column.setter def fold_column(self, fold_column): assert_is_type(fold_column, None, str) self._parms["fold_column"] = fold_column @property def response_column(self): """ Response variable column. Type: ``str``. """ return self._parms.get("response_column") @response_column.setter def response_column(self, response_column): assert_is_type(response_column, None, str) self._parms["response_column"] = response_column @property def ignored_columns(self): """ Names of columns to ignore for training. Type: ``List[str]``. """ return self._parms.get("ignored_columns") @ignored_columns.setter def ignored_columns(self, ignored_columns): assert_is_type(ignored_columns, None, [str]) self._parms["ignored_columns"] = ignored_columns @property def ignore_const_cols(self): """ Ignore constant columns. Type: ``bool`` (default: ``True``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> cars["const_1"] = 6 >>> cars["const_2"] = 7 >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(seed=1234, ... ignore_const_cols=True) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.auc(valid=True) """ return self._parms.get("ignore_const_cols") @ignore_const_cols.setter def ignore_const_cols(self, ignore_const_cols): assert_is_type(ignore_const_cols, None, bool) self._parms["ignore_const_cols"] = ignore_const_cols @property def offset_column(self): """ [Deprecated] Offset column. This will be added to the combination of columns before applying the link function. Type: ``str``. """ return self._parms.get("offset_column") @offset_column.setter def offset_column(self, offset_column): assert_is_type(offset_column, None, str) self._parms["offset_column"] = offset_column @property def weights_column(self): """ Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. This is typically the number of times a row is repeated, but non-integer values are supported as well. During training, rows with higher weights matter more, due to the larger loss function pre-factor. Type: ``str``. :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], ... seed=1234) >>> cars_drf = H2ORandomForestEstimator(seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid, ... weights_column="weight") >>> cars_drf.auc(valid=True) """ return self._parms.get("weights_column") @weights_column.setter def weights_column(self, weights_column): assert_is_type(weights_column, None, str) self._parms["weights_column"] = weights_column @property def balance_classes(self): """ Balance training data class counts via over/under-sampling (for imbalanced data). Type: ``bool`` (default: ``False``). :examples: >>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data") >>> covtype[54] = covtype[54].asfactor() >>> predictors = covtype.columns[0:54] >>> response = 'C55' >>> train, valid = covtype.split_frame(ratios=[.8], seed=1234) >>> cov_drf = H2ORandomForestEstimator(balance_classes=True, ... seed=1234) >>> cov_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('logloss', cov_drf.logloss(valid=True)) """ return self._parms.get("balance_classes") @balance_classes.setter def balance_classes(self, balance_classes): assert_is_type(balance_classes, None, bool) self._parms["balance_classes"] = balance_classes @property def class_sampling_factors(self): """ Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes. Type: ``List[float]``. :examples: >>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data") >>> covtype[54] = covtype[54].asfactor() >>> predictors = covtype.columns[0:54] >>> response = 'C55' >>> train, valid = covtype.split_frame(ratios=[.8], seed=1234) >>> print(covtype[54].table()) >>> sample_factors = [1., 0.5, 1., 1., 1., 1., 1.] >>> cov_drf = H2ORandomForestEstimator(balance_classes=True, ... class_sampling_factors=sample_factors, ... seed=1234) >>> cov_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('logloss', cov_drf.logloss(valid=True)) """ return self._parms.get("class_sampling_factors") @class_sampling_factors.setter def class_sampling_factors(self, class_sampling_factors): assert_is_type(class_sampling_factors, None, [float]) self._parms["class_sampling_factors"] = class_sampling_factors @property def max_after_balance_size(self): """ Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Type: ``float`` (default: ``5``). :examples: >>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data") >>> covtype[54] = covtype[54].asfactor() >>> predictors = covtype.columns[0:54] >>> response = 'C55' >>> train, valid = covtype.split_frame(ratios=[.8], seed=1234) >>> print(covtype[54].table()) >>> max = .85 >>> cov_drf = H2ORandomForestEstimator(balance_classes=True, ... max_after_balance_size=max, ... seed=1234) >>> cov_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('logloss', cov_drf.logloss(valid=True)) """ return self._parms.get("max_after_balance_size") @max_after_balance_size.setter def max_after_balance_size(self, max_after_balance_size): assert_is_type(max_after_balance_size, None, float) self._parms["max_after_balance_size"] = max_after_balance_size @property def max_confusion_matrix_size(self): """ [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs Type: ``int`` (default: ``20``). """ return self._parms.get("max_confusion_matrix_size") @max_confusion_matrix_size.setter def max_confusion_matrix_size(self, max_confusion_matrix_size): assert_is_type(max_confusion_matrix_size, None, int) self._parms["max_confusion_matrix_size"] = max_confusion_matrix_size @property def max_hit_ratio_k(self): """ Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) Type: ``int`` (default: ``0``). :examples: >>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data") >>> covtype[54] = covtype[54].asfactor() >>> predictors = covtype.columns[0:54] >>> response = 'C55' >>> train, valid = covtype.split_frame(ratios=[.8], seed=1234) >>> cov_drf = H2ORandomForestEstimator(max_hit_ratio_k=3, ... seed=1234) >>> cov_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cov_drf.show() """ return self._parms.get("max_hit_ratio_k") @max_hit_ratio_k.setter def max_hit_ratio_k(self, max_hit_ratio_k): assert_is_type(max_hit_ratio_k, None, int) self._parms["max_hit_ratio_k"] = max_hit_ratio_k @property def ntrees(self): """ Number of trees. Type: ``int`` (default: ``50``). :examples: >>> titanic = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv") >>> titanic['survived'] = titanic['survived'].asfactor() >>> predictors = titanic.columns >>> del predictors[1:3] >>> response = 'survived' >>> train, valid = titanic.split_frame(ratios=[.8], ... seed=1234) >>> tree_num = [20, 50, 80, 110, ... 140, 170, 200] >>> label = ["20", "50", "80", "110", ... "140", "170", "200"] >>> for key, num in enumerate(tree_num): # Input an integer for 'num' and 'key' >>> titanic_drf = H2ORandomForestEstimator(ntrees=num, ... seed=1234) >>> titanic_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(label[key], 'training score', ... titanic_drf.auc(train=True)) >>> print(label[key], 'validation score', ... titanic_drf.auc(valid=True)) """ return self._parms.get("ntrees") @ntrees.setter def ntrees(self, ntrees): assert_is_type(ntrees, None, int) self._parms["ntrees"] = ntrees @property def max_depth(self): """ Maximum tree depth. Type: ``int`` (default: ``20``). :examples: >>> df = h2o.import_file(path = "http://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv") >>> response = "survived" >>> df[response] = df[response].asfactor() >>> predictors = df.columns >>> del predictors[1:3] >>> train, valid, test = df.split_frame(ratios=[0.6,0.2], ... seed=1234, ... destination_frames= ... ['train.hex','valid.hex','test.hex']) >>> drf = H2ORandomForestEstimator() >>> drf.train(x=predictors, ... y=response, ... training_frame=train) >>> perf = drf.model_performance(valid) >>> print perf.auc() """ return self._parms.get("max_depth") @max_depth.setter def max_depth(self, max_depth): assert_is_type(max_depth, None, int) self._parms["max_depth"] = max_depth @property def min_rows(self): """ Fewest allowed (weighted) observations in a leaf. Type: ``float`` (default: ``1``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(min_rows=16, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(cars_drf.auc(valid=True)) """ return self._parms.get("min_rows") @min_rows.setter def min_rows(self, min_rows): assert_is_type(min_rows, None, numeric) self._parms["min_rows"] = min_rows @property def nbins(self): """ For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point Type: ``int`` (default: ``20``). :examples: >>> eeg = h2o.import_file("https://h2o-public-test-data.s3.amazonaws.com/smalldata/eeg/eeg_eyestate.csv") >>> eeg['eyeDetection'] = eeg['eyeDetection'].asfactor() >>> predictors = eeg.columns[:-1] >>> response = 'eyeDetection' >>> train, valid = eeg.split_frame(ratios=[.8], seed=1234) >>> bin_num = [16, 32, 64, 128, 256, 512] >>> label = ["16", "32", "64", "128", "256", "512"] >>> for key, num in enumerate(bin_num): # Insert integer for 'num' and 'key' >>> eeg_drf = H2ORandomForestEstimator(nbins=num, seed=1234) >>> eeg_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(label[key], 'training score', ... eeg_drf.auc(train=True)) >>> print(label[key], 'validation score', ... eeg_drf.auc(train=True)) """ return self._parms.get("nbins") @nbins.setter def nbins(self, nbins): assert_is_type(nbins, None, int) self._parms["nbins"] = nbins @property def nbins_top_level(self): """ For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease by factor of two per level Type: ``int`` (default: ``1024``). :examples: >>> eeg = h2o.import_file("https://h2o-public-test-data.s3.amazonaws.com/smalldata/eeg/eeg_eyestate.csv") >>> eeg['eyeDetection'] = eeg['eyeDetection'].asfactor() >>> predictors = eeg.columns[:-1] >>> response = 'eyeDetection' >>> train, valid = eeg.split_frame(ratios=[.8], ... seed=1234) >>> bin_num = [32, 64, 128, 256, 512, ... 1024, 2048, 4096] >>> label = ["32", "64", "128", "256", ... "512", "1024", "2048", "4096"] >>> for key, num in enumerate(bin_num): # Insert integer for 'num' and 'key' >>> eeg_drf = H2ORandomForestEstimator(nbins_top_level=32, ... seed=1234) >>> eeg_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(label[key], 'training score', ... eeg_gbm.auc(train=True)) >>> print(label[key], 'validation score', ... eeg_gbm.auc(valid=True)) """ return self._parms.get("nbins_top_level") @nbins_top_level.setter def nbins_top_level(self, nbins_top_level): assert_is_type(nbins_top_level, None, int) self._parms["nbins_top_level"] = nbins_top_level @property def nbins_cats(self): """ For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher values can lead to more overfitting. Type: ``int`` (default: ``1024``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], seed=1234) >>> bin_num = [8, 16, 32, 64, 128, 256, ... 512, 1024, 2048, 4096] >>> label = ["8", "16", "32", "64", "128", ... "256", "512", "1024", "2048", "4096"] >>> for key, num in enumerate(bin_num): # Insert integer for 'num' and 'key' >>> airlines_drf = H2ORandomForestEstimator(nbins_cats=num, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(label[key], 'training score', ... airlines_gbm.auc(train=True)) >>> print(label[key], 'validation score', ... airlines_gbm.auc(valid=True)) """ return self._parms.get("nbins_cats") @nbins_cats.setter def nbins_cats(self, nbins_cats): assert_is_type(nbins_cats, None, int) self._parms["nbins_cats"] = nbins_cats @property def r2_stopping(self): """ r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds this Type: ``float`` (default: ``1.797693135e+308``). """ return self._parms.get("r2_stopping") @r2_stopping.setter def r2_stopping(self, r2_stopping): assert_is_type(r2_stopping, None, numeric) self._parms["r2_stopping"] = r2_stopping @property def stopping_rounds(self): """ Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) Type: ``int`` (default: ``0``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], ... seed=1234) >>> airlines_drf = H2ORandomForestEstimator(stopping_metric="auc", ... stopping_rounds=3, ... stopping_tolerance=1e-2, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> airlines_drf.auc(valid=True) """ return self._parms.get("stopping_rounds") @stopping_rounds.setter def stopping_rounds(self, stopping_rounds): assert_is_type(stopping_rounds, None, int) self._parms["stopping_rounds"] = stopping_rounds @property def stopping_metric(self): """ Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anonomaly_score for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. One of: ``"auto"``, ``"deviance"``, ``"logloss"``, ``"mse"``, ``"rmse"``, ``"mae"``, ``"rmsle"``, ``"auc"``, ``"aucpr"``, ``"lift_top_group"``, ``"misclassification"``, ``"mean_per_class_error"``, ``"custom"``, ``"custom_increasing"`` (default: ``"auto"``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], ... seed=1234) >>> airlines_drf = H2ORandomForestEstimator(stopping_metric="auc", ... stopping_rounds=3, ... stopping_tolerance=1e-2, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> airlines_drf.auc(valid=True) """ return self._parms.get("stopping_metric") @stopping_metric.setter def stopping_metric(self, stopping_metric): assert_is_type(stopping_metric, None, Enum("auto", "deviance", "logloss", "mse", "rmse", "mae", "rmsle", "auc", "aucpr", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing")) self._parms["stopping_metric"] = stopping_metric @property def stopping_tolerance(self): """ Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) Type: ``float`` (default: ``0.001``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], ... seed=1234) >>> airlines_drf = H2ORandomForestEstimator(stopping_metric="auc", ... stopping_rounds=3, ... stopping_tolerance=1e-2, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> airlines_drf.auc(valid=True) """ return self._parms.get("stopping_tolerance") @stopping_tolerance.setter def stopping_tolerance(self, stopping_tolerance): assert_is_type(stopping_tolerance, None, numeric) self._parms["stopping_tolerance"] = stopping_tolerance @property def max_runtime_secs(self): """ Maximum allowed runtime in seconds for model training. Use 0 to disable. Type: ``float`` (default: ``0``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(max_runtime_secs=10, ... ntrees=10000, ... max_depth=10, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.auc(valid = True) """ return self._parms.get("max_runtime_secs") @max_runtime_secs.setter def max_runtime_secs(self, max_runtime_secs): assert_is_type(max_runtime_secs, None, numeric) self._parms["max_runtime_secs"] = max_runtime_secs @property def seed(self): """ Seed for pseudo random number generator (if applicable) Type: ``int`` (default: ``-1``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], seed=1234) >>> drf_w_seed_1 = H2ORandomForestEstimator(seed=1234) >>> drf_w_seed_1.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('auc for the 1st model build with a seed:', ... drf_w_seed_1.auc(valid=True)) """ return self._parms.get("seed") @seed.setter def seed(self, seed): assert_is_type(seed, None, int) self._parms["seed"] = seed @property def build_tree_one_node(self): """ Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. Type: ``bool`` (default: ``False``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(build_tree_one_node=True, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.auc(valid=True) """ return self._parms.get("build_tree_one_node") @build_tree_one_node.setter def build_tree_one_node(self, build_tree_one_node): assert_is_type(build_tree_one_node, None, bool) self._parms["build_tree_one_node"] = build_tree_one_node @property def mtries(self): """ Number of variables randomly sampled as candidates at each split. If set to -1, defaults to sqrt{p} for classification and p/3 for regression (where p is the # of predictors Type: ``int`` (default: ``-1``). :examples: >>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data") >>> covtype[54] = covtype[54].asfactor() >>> predictors = covtype.columns[0:54] >>> response = 'C55' >>> train, valid = covtype.split_frame(ratios=[.8], seed=1234) >>> cov_drf = H2ORandomForestEstimator(mtries=30, seed=1234) >>> cov_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('logloss', cov_drf.logloss(valid=True)) """ return self._parms.get("mtries") @mtries.setter def mtries(self, mtries): assert_is_type(mtries, None, int) self._parms["mtries"] = mtries @property def sample_rate(self): """ Row sample rate per tree (from 0.0 to 1.0) Type: ``float`` (default: ``0.632``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], ... seed=1234) >>> airlines_drf = H2ORandomForestEstimator(sample_rate=.7, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(airlines_drf.auc(valid=True)) """ return self._parms.get("sample_rate") @sample_rate.setter def sample_rate(self, sample_rate): assert_is_type(sample_rate, None, numeric) self._parms["sample_rate"] = sample_rate @property def sample_rate_per_class(self): """ A list of row sample rates per class (relative fraction for each class, from 0.0 to 1.0), for each tree Type: ``List[float]``. :examples: >>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data") >>> covtype[54] = covtype[54].asfactor() >>> predictors = covtype.columns[0:54] >>> response = 'C55' >>> train, valid = covtype.split_frame(ratios=[.8], ... seed=1234) >>> print(train[response].table()) >>> rate_per_class_list = [1, .4, 1, 1, 1, 1, 1] >>> cov_drf = H2ORandomForestEstimator(sample_rate_per_class=rate_per_class_list, ... seed=1234) >>> cov_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('logloss', cov_drf.logloss(valid=True)) """ return self._parms.get("sample_rate_per_class") @sample_rate_per_class.setter def sample_rate_per_class(self, sample_rate_per_class): assert_is_type(sample_rate_per_class, None, [numeric]) self._parms["sample_rate_per_class"] = sample_rate_per_class @property def binomial_double_trees(self): """ For binary classification: Build 2x as many trees (one per class) - can lead to higher accuracy. Type: ``bool`` (default: ``False``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(binomial_double_trees=False, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('without binomial_double_trees:', ... cars_drf.auc(valid=True)) >>> cars_drf_2 = H2ORandomForestEstimator(binomial_double_trees=True, ... seed=1234) >>> cars_drf_2.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print('with binomial_double_trees:', cars_drf_2.auc(valid=True)) """ return self._parms.get("binomial_double_trees") @binomial_double_trees.setter def binomial_double_trees(self, binomial_double_trees): assert_is_type(binomial_double_trees, None, bool) self._parms["binomial_double_trees"] = binomial_double_trees @property def checkpoint(self): """ Model checkpoint to resume training with. Type: ``str``. :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], ... seed=1234) >>> cars_drf = H2ORandomForestEstimator(ntrees=1, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(cars_drf.auc(valid=True)) """ return self._parms.get("checkpoint") @checkpoint.setter def checkpoint(self, checkpoint): assert_is_type(checkpoint, None, str, H2OEstimator) self._parms["checkpoint"] = checkpoint @property def col_sample_rate_change_per_level(self): """ Relative change of the column sampling rate for every level (must be > 0.0 and <= 2.0) Type: ``float`` (default: ``1``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], seed=1234) >>> airlines_drf = H2ORandomForestEstimator(col_sample_rate_change_per_level=.9, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(airlines_drf.auc(valid=True)) """ return self._parms.get("col_sample_rate_change_per_level") @col_sample_rate_change_per_level.setter def col_sample_rate_change_per_level(self, col_sample_rate_change_per_level): assert_is_type(col_sample_rate_change_per_level, None, numeric) self._parms["col_sample_rate_change_per_level"] = col_sample_rate_change_per_level @property def col_sample_rate_per_tree(self): """ Column sample rate per tree (from 0.0 to 1.0) Type: ``float`` (default: ``1``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], seed=1234) >>> airlines_drf = H2ORandomForestEstimator(col_sample_rate_per_tree=.7, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(airlines_drf.auc(valid=True)) """ return self._parms.get("col_sample_rate_per_tree") @col_sample_rate_per_tree.setter def col_sample_rate_per_tree(self, col_sample_rate_per_tree): assert_is_type(col_sample_rate_per_tree, None, numeric) self._parms["col_sample_rate_per_tree"] = col_sample_rate_per_tree @property def min_split_improvement(self): """ Minimum relative improvement in squared error reduction for a split to happen Type: ``float`` (default: ``1e-05``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(min_split_improvement=1e-3, ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(cars_drf.auc(valid=True)) """ return self._parms.get("min_split_improvement") @min_split_improvement.setter def min_split_improvement(self, min_split_improvement): assert_is_type(min_split_improvement, None, numeric) self._parms["min_split_improvement"] = min_split_improvement @property def histogram_type(self): """ What type of histogram to use for finding optimal split points One of: ``"auto"``, ``"uniform_adaptive"``, ``"random"``, ``"quantiles_global"``, ``"round_robin"`` (default: ``"auto"``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], seed=1234) >>> airlines_drf = H2ORandomForestEstimator(histogram_type="UniformAdaptive", ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> print(airlines_drf.auc(valid=True)) """ return self._parms.get("histogram_type") @histogram_type.setter def histogram_type(self, histogram_type): assert_is_type(histogram_type, None, Enum("auto", "uniform_adaptive", "random", "quantiles_global", "round_robin")) self._parms["histogram_type"] = histogram_type @property def categorical_encoding(self): """ Encoding scheme for categorical features One of: ``"auto"``, ``"enum"``, ``"one_hot_internal"``, ``"one_hot_explicit"``, ``"binary"``, ``"eigen"``, ``"label_encoder"``, ``"sort_by_response"``, ``"enum_limited"`` (default: ``"auto"``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip") >>> airlines["Year"] = airlines["Year"].asfactor() >>> airlines["Month"] = airlines["Month"].asfactor() >>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() >>> airlines["Cancelled"] = airlines["Cancelled"].asfactor() >>> airlines['FlightNum'] = airlines['FlightNum'].asfactor() >>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier", ... "DayOfWeek", "Month", "Distance", "FlightNum"] >>> response = "IsDepDelayed" >>> train, valid= airlines.split_frame(ratios=[.8], seed=1234) >>> encoding = "one_hot_explicit" >>> airlines_drf = H2ORandomForestEstimator(categorical_encoding=encoding, ... seed=1234) >>> airlines_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> airlines_drf.auc(valid=True) """ return self._parms.get("categorical_encoding") @categorical_encoding.setter def categorical_encoding(self, categorical_encoding): assert_is_type(categorical_encoding, None, Enum("auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder", "sort_by_response", "enum_limited")) self._parms["categorical_encoding"] = categorical_encoding @property def calibrate_model(self): """ Use Platt Scaling to calculate calibrated class probabilities. Calibration can provide more accurate estimates of class probabilities. Type: ``bool`` (default: ``False``). :examples: >>> ecology = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/ecology_model.csv") >>> ecology['Angaus'] = ecology['Angaus'].asfactor() >>> from h2o.estimators.random_forest import H2ORandomForestEstimator >>> response = 'Angaus' >>> predictors = ecology.columns[3:13] >>> train, calib = ecology.split_frame(seed=12354) >>> w = h2o.create_frame(binary_fraction=1, ... binary_ones_fraction=0.5, ... missing_fraction=0, ... rows=744, cols=1) >>> w.set_names(["weight"]) >>> train = train.cbind(w) >>> ecology_drf = H2ORandomForestEstimator(ntrees=10, ... max_depth=5, ... min_rows=10, ... distribution="multinomial", ... weights_column="weight", ... calibrate_model=True, ... calibration_frame=calib) >>> ecology_drf.train(x=predictors, ... y="Angaus", ... training_frame=train) >>> predicted = ecology_drf.predict(calib) """ return self._parms.get("calibrate_model") @calibrate_model.setter def calibrate_model(self, calibrate_model): assert_is_type(calibrate_model, None, bool) self._parms["calibrate_model"] = calibrate_model @property def calibration_frame(self): """ Calibration frame for Platt Scaling Type: ``H2OFrame``. :examples: >>> ecology = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/ecology_model.csv") >>> ecology['Angaus'] = ecology['Angaus'].asfactor() >>> response = 'Angaus' >>> predictors = ecology.columns[3:13] >>> train, calib = ecology.split_frame(seed = 12354) >>> w = h2o.create_frame(binary_fraction=1, ... binary_ones_fraction=0.5, ... missing_fraction=0, ... rows=744, cols=1) >>> w.set_names(["weight"]) >>> train = train.cbind(w) >>> ecology_drf = H2ORandomForestEstimator(ntrees=10, ... max_depth=5, ... min_rows=10, ... distribution="multinomial", ... calibrate_model=True, ... calibration_frame=calib) >>> ecology_drf.train(x=predictors, ... y="Angaus, ... training_frame=train, ... weights_column="weight") >>> predicted = ecology_drf.predict(train) """ return self._parms.get("calibration_frame") @calibration_frame.setter def calibration_frame(self, calibration_frame): self._parms["calibration_frame"] = H2OFrame._validate(calibration_frame, 'calibration_frame') @property def distribution(self): """ [Deprecated] Distribution function One of: ``"auto"``, ``"bernoulli"``, ``"multinomial"``, ``"gaussian"``, ``"poisson"``, ``"gamma"``, ``"tweedie"``, ``"laplace"``, ``"quantile"``, ``"huber"`` (default: ``"auto"``). :examples: >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "cylinders" >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> cars_drf = H2ORandomForestEstimator(distribution="poisson", ... seed=1234) >>> cars_drf.train(x=predictors, ... y=response, ... training_frame=train, ... validation_frame=valid) >>> cars_drf.mse(valid=True) """ return self._parms.get("distribution") @distribution.setter def distribution(self, distribution): assert_is_type(distribution, None, Enum("auto", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber")) self._parms["distribution"] = distribution @property def custom_metric_func(self): """ Reference to custom evaluation function, format: `language:keyName=funcName` Type: ``str``. """ return self._parms.get("custom_metric_func") @custom_metric_func.setter def custom_metric_func(self, custom_metric_func): assert_is_type(custom_metric_func, None, str) self._parms["custom_metric_func"] = custom_metric_func @property def export_checkpoints_dir(self): """ Automatically export generated models to this directory. Type: ``str``. :examples: >>> import tempfile >>> from os import listdir >>> from h2o.grid.grid_search import H2OGridSearch >>> airlines = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip", destination_frame="air.hex") >>> predictors = ["DayofMonth", "DayOfWeek"] >>> response = "IsDepDelayed" >>> hyper_parameters = {'ntrees': [5,10]} >>> search_crit = {'strategy': "RandomDiscrete", ... 'max_models': 5, ... 'seed': 1234, ... 'stopping_rounds': 3, ... 'stopping_metric': "AUTO", ... 'stopping_tolerance': 1e-2} >>> checkpoints_dir = tempfile.mkdtemp() >>> air_grid = H2OGridSearch(H2ORandomForestEstimator, ... hyper_params=hyper_parameters, ... search_criteria=search_crit) >>> air_grid.train(x=predictors, ... y=response, ... training_frame=airlines, ... distribution="bernoulli", ... max_depth=3, ... export_checkpoints_dir=checkpoints_dir) >>> num_files = len(listdir(checkpoints_dir)) >>> num_files """ return self._parms.get("export_checkpoints_dir") @export_checkpoints_dir.setter def export_checkpoints_dir(self, export_checkpoints_dir): assert_is_type(export_checkpoints_dir, None, str) self._parms["export_checkpoints_dir"] = export_checkpoints_dir @property def check_constant_response(self): """ Check if response column is constant. If enabled, then an exception is thrown if the response column is a constant value.If disabled, then model will train regardless of the response column being a constant value or not. Type: ``bool`` (default: ``True``). :examples: >>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv") >>> train["constantCol"] = 1 >>> my_drf = H2ORandomForestEstimator(check_constant_response=False) >>> my_drf.train(x=list(range(1,5)), ... y="constantCol", ... training_frame=train) """ return self._parms.get("check_constant_response") @check_constant_response.setter def check_constant_response(self, check_constant_response): assert_is_type(check_constant_response, None, bool) self._parms["check_constant_response"] = check_constant_response @property def gainslift_bins(self): """ Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. Type: ``int`` (default: ``-1``). :examples: >>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/testng/airlines_train.csv") >>> model = H2ORandomForestEstimator(ntrees=1, gainslift_bins=20) >>> model.train(x=["Origin", "Distance"], ... y="IsDepDelayed", ... training_frame=airlines) >>> model.gains_lift() """ return self._parms.get("gainslift_bins") @gainslift_bins.setter def gainslift_bins(self, gainslift_bins): assert_is_type(gainslift_bins, None, int) self._parms["gainslift_bins"] = gainslift_bins