Builds an Aggregated Frame of an H2OFrame.

h2o.aggregator(
  training_frame,
  x,
  model_id = NULL,
  ignore_const_cols = TRUE,
  target_num_exemplars = 5000,
  rel_tol_num_exemplars = 0.5,
  transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"),
  categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
    "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),
  save_mapping_frame = FALSE,
  num_iteration_without_new_exemplar = 500,
  export_checkpoints_dir = NULL
)

Arguments

training_frame

Id of the training data frame.

x

A vector containing the character names of the predictors in the model.

model_id

Destination id for this model; auto-generated if not specified.

ignore_const_cols

Logical. Ignore constant columns. Defaults to TRUE.

target_num_exemplars

Targeted number of exemplars Defaults to 5000.

rel_tol_num_exemplars

Relative tolerance for number of exemplars (e.g, 0.5 is +/- 50 percents) Defaults to 0.5.

transform

Transformation of training data Must be one of: "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE". Defaults to NORMALIZE.

categorical_encoding

Encoding scheme for categorical features Must be one of: "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited". Defaults to AUTO.

save_mapping_frame

Logical. Whether to export the mapping of the aggregated frame Defaults to FALSE.

num_iteration_without_new_exemplar

The number of iterations to run before aggregator exits if the number of exemplars collected didn't change Defaults to 500.

export_checkpoints_dir

Automatically export generated models to this directory.

Examples

if (FALSE) {
library(h2o)
h2o.init()
df <- h2o.createFrame(rows = 100, 
                      cols = 5, 
                      categorical_fraction = 0.6, 
                      integer_fraction = 0,
                      binary_fraction = 0, 
                      real_range = 100, 
                      integer_range = 100, 
                      missing_fraction = 0)
target_num_exemplars = 1000
rel_tol_num_exemplars = 0.5
encoding = "Eigen"
agg <- h2o.aggregator(training_frame = df,
                     target_num_exemplars = target_num_exemplars,
                     rel_tol_num_exemplars = rel_tol_num_exemplars,
                     categorical_encoding = encoding)
}