# -*- encoding: utf-8 -*-
import random
from contextlib import contextmanager
from collections import OrderedDict, Counter
import h2o
import numpy as np
import matplotlib
import matplotlib.colors
import matplotlib.figure
from h2o.utils.ext_dependencies import get_matplotlib_pyplot
def _display(object):
"""
Display the object.
:param object: An object to be displayed.
:returns: the input
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
if isinstance(object, matplotlib.figure.Figure) and matplotlib.get_backend().lower() != "agg":
plt.show()
else:
try:
import IPython.display
IPython.display.display(object)
except ImportError:
print(object)
if isinstance(object, matplotlib.figure.Figure):
plt.close(object)
print("\n")
return object
def _dont_display(object):
"""
Don't display the object
:param object: that should not be displayed
:returns: input
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
if isinstance(object, matplotlib.figure.Figure):
plt.close()
return object
# UTILS
class Header:
"""
Class representing a Header with pretty printing for IPython.
"""
def __init__(self, content, level=1):
self.content = content
self.level = level
def _repr_html_(self):
return "<h{level}>{content}</h{level}>".format(level=self.level, content=self.content)
def _repr_markdown_(self):
return "\n\n{} {}".format("#" * self.level, self.content)
def _repr_pretty_(self, p, cycle):
p.text(str(self))
def __str__(self):
return self._repr_markdown_()
class Description:
"""
Class representing a Description with pretty printing for IPython.
"""
DESCRIPTIONS = dict(
leaderboard="Leaderboard shows models with their metrics. When provided with H2OAutoML object, "
"the leaderboard shows 5-fold cross-validated metrics by default (depending on the "
"H2OAutoML settings), otherwise it shows metrics computed on the frame. "
"At most 20 models are shown by default.",
leaderboard_row="Leaderboard shows models with their metrics and their predictions for a given row. "
"When provided with H2OAutoML object, the leaderboard shows 5-fold cross-validated "
"metrics by default (depending on the H2OAutoML settings), otherwise it shows "
"metrics computed on the frame. At most 20 models are shown by default.",
confusion_matrix="Confusion matrix shows a predicted class vs an actual class.",
residual_analysis="Residual Analysis plots the fitted values vs residuals on a test dataset. Ideally, "
"residuals should be randomly distributed. Patterns in this plot can indicate potential "
"problems with the model selection, e.g., using simpler model than necessary, not accounting "
"for heteroscedasticity, autocorrelation, etc. Note that if you see \"striped\" lines of "
"residuals, that is an artifact of having an integer valued (vs a real valued) "
"response variable.",
variable_importance="The variable importance plot shows the relative importance of the most "
"important variables in the model.",
varimp_heatmap="Variable importance heatmap shows variable importance across multiple models. "
"Some models in H2O return variable importance for one-hot (binary indicator) "
"encoded versions of categorical columns (e.g. Deep Learning, XGBoost). "
"In order for the variable importance of categorical columns to be compared "
"across all model types we compute a summarization of the the variable importance "
"across all one-hot encoded features and return a single variable importance for the "
"original categorical feature. By default, the models and variables are ordered by "
"their similarity.",
model_correlation_heatmap="This plot shows the correlation between the predictions of the models. "
"For classification, frequency of identical predictions is used. By default, "
"models are ordered by their similarity (as computed by hierarchical clustering). "
"Interpretable models, such as GAM, GLM, and RuleFit are highlighted using "
"red colored text.",
shap_summary="SHAP summary plot shows the contribution of the features for each instance (row of data). "
"The sum of the feature contributions and the bias term is equal to the raw prediction of "
"the model, i.e., prediction before applying inverse link function.",
pdp="Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on "
"the response. The effect of a variable is measured in change in the mean response. PDP assumes "
"independence between the feature for which is the PDP computed and the rest.",
ice="An Individual Conditional Expectation (ICE) plot gives a graphical depiction of the marginal effect "
"of a variable on the response. ICE plots are similar to partial dependence plots (PDP); PDP shows the "
"average effect of a feature while ICE plot shows the effect for a single instance. This function will "
"plot the effect for each decile. In contrast to the PDP, ICE plots can provide more insight, especially "
"when there is stronger feature interaction.",
ice_row="Individual conditional expectations (ICE) plot gives a graphical depiction of the marginal "
"effect of a variable on the response for a given row. ICE plot is similar to partial "
"dependence plot (PDP), PDP shows the average effect of a feature while ICE plot shows "
"the effect for a single instance.",
shap_explain_row="SHAP explanation shows contribution of features for a given instance. The sum "
"of the feature contributions and the bias term is equal to the raw prediction of "
"the model, i.e., prediction before applying inverse link function. H2O implements "
"TreeSHAP which when the features are correlated, can increase contribution of a feature "
"that had no influence on the prediction.",
)
def __init__(self, for_what):
self.content = self.DESCRIPTIONS[for_what]
def _repr_html_(self):
return "<blockquote>{}</blockquote>".format(self.content)
def _repr_markdown_(self):
return "\n> {}".format(self.content)
def _repr_pretty_(self, p, cycle):
p.text(str(self))
def __str__(self):
return self._repr_markdown_()
class H2OExplanation(OrderedDict):
def _ipython_display_(self):
from IPython.display import display
for v in self.values():
display(v)
@contextmanager
def no_progress():
"""
A context manager that temporarily blocks showing the H2O's progress bar.
Used when a multiple models are evaluated.
"""
progress = h2o.job.H2OJob.__PROGRESS_BAR__
if progress:
h2o.no_progress()
yield
if progress:
h2o.show_progress()
class NumpyFrame:
"""
Simple class that very vaguely emulates Pandas DataFrame.
Main purpose is to keep parsing from the List of Lists format to numpy.
This class is meant to be used just in the explain module.
Due to that fact it encodes the factor variables similarly to R/pandas -
factors are mapped to numeric column which in turn makes it easier to plot it.
"""
def __init__(self, h2o_frame):
# type: ("NumpyFrame", Union[h2o.H2OFrame, h2o.two_dim_table.H2OTwoDimTable]) -> None
if isinstance(h2o_frame, h2o.two_dim_table.H2OTwoDimTable):
self._columns = h2o_frame.col_header
_is_numeric = np.array([type_ in ["double", "float", "long", "integer"]
for type_ in h2o_frame.col_types], dtype=bool)
_is_factor = np.array([type_ in ["string"] for type_ in h2o_frame.col_types],
dtype=bool)
df = h2o_frame.cell_values
self._factors = dict()
for col in range(len(self._columns)):
if _is_factor[col]:
levels = set(row[col] for row in df)
self._factors[self._columns[col]] = list(levels)
self._data = np.empty((len(df), len(self._columns)))
df = [self._columns] + df
elif isinstance(h2o_frame, h2o.H2OFrame):
_is_factor = np.array(h2o_frame.isfactor(), dtype=np.bool) | np.array(
h2o_frame.ischaracter(), dtype=np.bool)
_is_numeric = h2o_frame.isnumeric()
self._columns = h2o_frame.columns
self._factors = {col: h2o_frame[col].asfactor().levels()[0] for col in
np.array(h2o_frame.columns)[_is_factor]}
df = h2o_frame.as_data_frame(False)
self._data = np.empty((h2o_frame.nrow, h2o_frame.ncol))
else:
raise RuntimeError("Unexpected type of \"h2o_frame\": {}".format(type(h2o_frame)))
for idx, col in enumerate(df[0]):
if _is_factor[idx]:
convertor = self.from_factor_to_num(col)
self._data[:, idx] = np.array(
[float(convertor.get(
row[idx] if not (len(row) == 0 or row[idx] == "") else "nan", "nan"))
for row in df[1:]], dtype=np.float32)
elif _is_numeric[idx]:
self._data[:, idx] = np.array(
[float(row[idx] if not (len(row) == 0 or row[idx] == "") else "nan") for row in
df[1:]],
dtype=np.float32)
else:
try:
self._data[:, idx] = np.array([row[idx] if not (len(row) == 0 or row[idx] == "")
else "nan" for row in df[1:]],
dtype=np.datetime64)
except Exception:
raise RuntimeError("Unexpected type of column {}!".format(col))
def isfactor(self, column):
# type: ("NumpyFrame", str) -> bool
"""
Is column a factor/categorical column?
:param column: string containing the column name
:returns: boolean
"""
return column in self._factors or self._get_column_and_factor(column)[0] in self._factors
def from_factor_to_num(self, column):
# type: ("NumpyFrame", str) -> Dict[str, int]
"""
Get a dictionary mapping a factor to its numerical representation in the NumpyFrame
:param column: string containing the column name
:returns: dictionary
"""
fact = self._factors[column]
return dict(zip(fact, range(len(fact))))
def from_num_to_factor(self, column):
# type: ("NumpyFrame", str) -> Dict[int, str]
"""
Get a dictionary mapping numerical representation of a factor to the category names.
:param column: string containing the column name
:returns: dictionary
"""
fact = self._factors[column]
return dict(zip(range(len(fact)), fact))
def _get_column_and_factor(self, column):
# type: ("NumpyFrame", str) -> Tuple[str, Optional[float]]
"""
Get a column name and possibly a factor name.
This is used to get proper column name and factor name when provided
with the output of some algos such as XGBoost which encode factor
columns to "column_name.category_name".
:param column: string containing the column name
:returns: tuple (column_name: str, factor_name: Optional[str])
"""
if column in self.columns:
return column, None
if column.endswith(".") and column[:-1] in self.columns:
return column[:-1], None
col_parts = column.split(".")
for i in range(1, len(col_parts) + 1):
if ".".join(col_parts[:i]) in self.columns:
column = ".".join(col_parts[:i])
factor_name = ".".join(col_parts[i:])
if factor_name == "missing(NA)":
factor = float("nan")
else:
factor = self.from_factor_to_num(column)[factor_name]
return column, factor
def __getitem__(self, indexer):
# type: ("NumpyFrame", Union[str, Tuple[Union[int,List[int]], str]]) -> np.ndarray
"""
A low level way to get a column or a row within a column.
NOTE: Returns numeric representation even for factors.
:param indexer: string for the whole column or a tuple (row_index, column_name)
:returns: a column or a row within a column
"""
row = slice(None)
if isinstance(indexer, tuple):
row = indexer[0]
column = indexer[1]
else:
column = indexer
if column not in self.columns:
column, factor = self._get_column_and_factor(column)
if factor is not None:
if factor != factor:
return np.asarray(np.isnan(self._data[row, self.columns.index(column)]),
dtype=np.float32)
return np.asarray(self._data[row, self.columns.index(column)] == factor,
dtype=np.float32)
return self._data[row, self.columns.index(column)]
def get(self, column, as_factor=True):
# type: ("NumpyFrame", str, bool) -> np.ndarray
"""
Get a column.
:param column: string containing the column name
:param as_factor: if True (default), factor column will contain string
representation; otherwise numerical representation
:returns: A column represented as numpy ndarray
"""
if as_factor and self.isfactor(column):
column, factor_idx = self._get_column_and_factor(column)
if factor_idx is not None:
return self[column] == factor_idx
convertor = self.from_num_to_factor(column)
return np.array([convertor.get(row, "") for row in self[column]])
return self[column]
def levels(self, column):
# type: ("NumpyFrame", str) -> List[str]
"""
Get levels/categories of a factor column.
:param column: a string containing the column name
:returns: list of levels
"""
return self._factors.get(column, [])
def nlevels(self, column):
# type: ("NumpyFrame", str) -> int
"""
Get number of levels/categories of a factor column.
:param column: string containing the column name
:returns: a number of levels within a factor
"""
return len(self.levels(column))
@property
def columns(self):
# type: ("NumpyFrame") -> List[str]
"""
Column within the NumpyFrame.
:returns: list of columns
"""
return self._columns
@property
def nrow(self):
# type: ("NumpyFrame") -> int
"""
Number of rows.
:returns: number of rows
"""
return self._data.shape[0]
@property
def ncol(self):
# type: ("NumpyFrame") -> int
"""
Number of columns.
:returns: number of columns
"""
return self._data.shape[1]
@property
def shape(self):
# type: ("NumpyFrame") -> Tuple[int, int]
"""
Shape of the frame.
:returns: tuple (number of rows, number of columns)
"""
return self._data.shape
def sum(self, axis=0):
# type: ("NumpyFrame", int) -> np.ndarray
"""
Calculate the sum of the NumpyFrame elements over the given axis.
WARNING: This method doesn't care if the column is categorical or numeric. Use with care.
:param axis: Axis along which a sum is performed.
:returns: numpy.ndarray with shape same as NumpyFrame with the `axis` removed
"""
return self._data.sum(axis=axis)
def mean(self, axis=0):
# type: ("NumpyFrame", int) -> np.ndarray
"""
Calculate the mean of the NumpyFrame elements over the given axis.
WARNING: This method doesn't care if the column is categorical or numeric. Use with care.
:param axis: Axis along which a mean is performed.
:returns: numpy.ndarray with shape same as NumpyFrame with the `axis` removed
"""
return self._data.mean(axis=axis)
def items(self, with_categorical_names=False):
# type: ("NumpyFrame", bool) -> Generator[Tuple[str, np.ndarray], None, None]
"""
Make a generator that yield column name and ndarray with values.
:params with_categorical_names: if True, factor columns are returned as string columns;
otherwise numerical
:returns: generator to be iterated upon
"""
for col in self.columns:
yield col, self.get(col, with_categorical_names)
def _shorten_model_ids(model_ids):
import re
regexp = re.compile("(.*)_AutoML_\\d{8}_\\d{6}(.*)")
shortened_model_ids = [regexp.sub("\\1\\2", model_id) for model_id in model_ids]
if len(set(shortened_model_ids)) == len(set(model_ids)):
return shortened_model_ids
return model_ids
def _get_algorithm(model, treat_xrt_as_algorithm=False):
# type: (Union[str, h2o.model.ModelBase], bool) -> str
"""
Get algorithm type. Use model id to infer it if possible.
:param model: model or a model_id
:param treat_xrt_as_algorithm: boolean used for best_of_family
:returns: string containing algorithm name
"""
if not isinstance(model, h2o.model.ModelBase):
import re
algo = re.search("^(DeepLearning|DRF|GAM|GBM|GLM|NaiveBayes|StackedEnsemble|RuleFit|XGBoost|XRT)(?=_)", model)
if algo is not None:
algo = algo.group(0).lower()
if algo == "xrt" and not treat_xrt_as_algorithm:
algo = "drf"
return algo
else:
model = h2o.get_model(model)
if treat_xrt_as_algorithm and model.algo == "drf":
if model.actual_params.get("histogram_type") == "Random":
return "xrt"
return model.algo
def _first_of_family(models, all_stackedensembles=True):
# type: (Union[str, h2o.model.ModelBase], bool) -> Union[str, h2o.model.ModelBase]
"""
Get first of family models
:param models: models or model ids
:param all_stackedensembles: if True return all stacked ensembles
:returns: list of models or model ids (the same type as on input)
"""
selected_models = []
included_families = set()
for model in models:
family = _get_algorithm(model, treat_xrt_as_algorithm=True)
if family not in included_families or (all_stackedensembles and "stackedensemble" == family):
selected_models.append(model)
included_families.add(family)
return selected_models
def _density(xs, bins=100):
# type: (np.ndarray, int) -> np.ndarray
"""
Make an approximate density estimation by blurring a histogram (used for SHAP summary plot).
:param xs: numpy vector
:param bins: number of bins
:returns: density values
"""
hist = list(np.histogram(xs, bins=bins))
# gaussian blur
hist[0] = np.convolve(hist[0],
[0.00598, 0.060626, 0.241843,
0.383103,
0.241843, 0.060626, 0.00598])[3:-3]
hist[0] = hist[0] / np.max(hist[0])
hist[1] = (hist[1][:-1] + hist[1][1:]) / 2
return np.interp(xs, hist[1], hist[0])
def _uniformize(data, col_name):
# type: (NumpyFrame, str) -> np.ndarray
"""
Convert to quantiles.
:param data: NumpyFrame
:param col_name: string containing a column name
:returns: quantile values of individual points in the column
"""
if col_name not in data.columns or data.isfactor(col_name):
res = data[col_name]
diff = (np.nanmax(res) - np.nanmin(res))
if diff <= 0 or np.isnan(diff):
return res
res = (res - np.nanmin(res)) / diff
return res
col = data[col_name]
xs = np.linspace(0, 1, 100)
quantiles = np.nanquantile(col, xs)
res = np.interp(col, quantiles, xs)
res = (res - np.nanmin(res)) / (np.nanmax(res) - np.nanmin(res))
return res
# PLOTS
def shap_summary_plot(
model, # type: h2o.model.ModelBase
frame, # type: h2o.H2OFrame
columns=None, # type: Optional[Union[List[int], List[str]]]
top_n_features=20, # type: int
samples=1000, # type: int
colorize_factors=True, # type: bool
alpha=1, # type: float
colormap=None, # type: str
figsize=(12, 12), # type: Union[Tuple[float], List[float]]
jitter=0.35 # type: float
): # type: (...) -> plt.Figure
"""
SHAP summary plot
SHAP summary plot shows contribution of features for each instance. The sum
of the feature contributions and the bias term is equal to the raw prediction
of the model, i.e., prediction before applying inverse link function.
:param model: h2o tree model, such as DRF, XRT, GBM, XGBoost
:param frame: H2OFrame
:param columns: either a list of columns or column indices to show. If specified
parameter top_n_features will be ignored.
:param top_n_features: a number of columns to pick using variable importance (where applicable).
:param samples: maximum number of observations to use; if lower than number of rows in the
frame, take a random sample
:param colorize_factors: if True, use colors from the colormap to colorize the factors;
otherwise all levels will have same color
:param alpha: transparency of the points
:param colormap: colormap to use instead of the default blue to red colormap
:param figsize: figure size; passed directly to matplotlib
:param jitter: amount of jitter used to show the point density
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.estimators import H2OGradientBoostingEstimator
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train a GBM
>>> gbm = H2OGradientBoostingEstimator()
>>> gbm.train(y=response, training_frame=train)
>>>
>>> # Create SHAP summary plot
>>> gbm.shap_summary_plot(test)
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
blue_to_red = matplotlib.colors.LinearSegmentedColormap.from_list("blue_to_red",
["#00AAEE", "#FF1166"])
if colormap is None:
colormap = blue_to_red
else:
colormap = plt.get_cmap(colormap)
# to prevent problems with data sorted in some logical way
# (overplotting with latest result which might have different values
# then the rest of the data in a given region)
permutation = list(range(frame.nrow))
random.shuffle(permutation)
if samples is not None:
permutation = sorted(permutation[:min(len(permutation), samples)])
frame = frame[permutation, :]
permutation = list(range(frame.nrow))
random.shuffle(permutation)
with no_progress():
contributions = NumpyFrame(model.predict_contributions(frame))
frame = NumpyFrame(frame)
contribution_names = contributions.columns
feature_importance = sorted(
{k: np.abs(v).mean() for k, v in contributions.items() if "BiasTerm" != k}.items(),
key=lambda kv: kv[1])
if columns is None:
top_n = min(top_n_features, len(feature_importance))
top_n_features = [fi[0] for fi in feature_importance[-top_n:]]
else:
picked_cols = []
columns = [frame.columns[col] if isinstance(col, int) else col for col in columns]
for feature in columns:
if feature in contribution_names:
picked_cols.append(feature)
else:
for contrib in contribution_names:
if contrib.startswith(feature + "."):
picked_cols.append(contrib)
top_n_features = picked_cols
plt.figure(figsize=figsize)
plt.grid(True)
plt.axvline(0, c="black")
for i in range(len(top_n_features)):
col_name = top_n_features[i]
col = contributions[permutation, col_name]
dens = _density(col)
plt.scatter(
col,
i + dens * np.random.uniform(-jitter, jitter, size=len(col)),
alpha=alpha,
c=_uniformize(frame, col_name)[permutation]
if colorize_factors or not frame.isfactor(col_name)
else np.full(frame.nrow, 0.5),
cmap=colormap
)
plt.clim(0, 1)
cbar = plt.colorbar()
cbar.set_label('Normalized feature value', rotation=270)
cbar.ax.get_yaxis().labelpad = 15
plt.yticks(range(len(top_n_features)), top_n_features)
plt.xlabel("SHAP value")
plt.ylabel("Feature")
plt.title("SHAP Summary plot for \"{}\"".format(model.model_id))
plt.tight_layout()
fig = plt.gcf()
return fig
def shap_explain_row_plot(
model, # type: h2o.model.ModelBase
frame, # type: h2o.H2OFrame
row_index, # type: int
columns=None, # type: Optional[Union[List[int], List[str]]]
top_n_features=10, # type: int
figsize=(16, 9), # type: Union[List[float], Tuple[float]]
plot_type="barplot", # type: str
contribution_type="both" # type: str
): # type: (...) -> plt.Figure
"""
SHAP local explanation
SHAP explanation shows contribution of features for a given instance. The sum
of the feature contributions and the bias term is equal to the raw prediction
of the model, i.e., prediction before applying inverse link function. H2O implements
TreeSHAP which when the features are correlated, can increase contribution of a feature
that had no influence on the prediction.
:param model: h2o tree model, such as DRF, XRT, GBM, XGBoost
:param frame: H2OFrame
:param row_index: row index of the instance to inspect
:param columns: either a list of columns or column indices to show. If specified
parameter top_n_features will be ignored.
:param top_n_features: a number of columns to pick using variable importance (where applicable).
When plot_type="barplot", then top_n_features will be chosen for each contribution_type.
:param figsize: figure size; passed directly to matplotlib
:param plot_type: either "barplot" or "breakdown"
:param contribution_type: One of "positive", "negative", or "both".
Used only for plot_type="barplot".
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.estimators import H2OGradientBoostingEstimator
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train a GBM
>>> gbm = H2OGradientBoostingEstimator()
>>> gbm.train(y=response, training_frame=train)
>>>
>>> # Create SHAP row explanation plot
>>> gbm.shap_explain_row_plot(test, row_index=0)
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
row = frame[row_index, :]
with no_progress():
contributions = NumpyFrame(model.predict_contributions(row))
contribution_names = contributions.columns
prediction = float(contributions.sum(axis=1))
bias = float(contributions["BiasTerm"])
contributions = sorted(filter(lambda pair: pair[0] != "BiasTerm", contributions.items()),
key=lambda pair: -abs(pair[1]))
if plot_type == "barplot":
with no_progress():
prediction = model.predict(row)[0, "predict"]
row = NumpyFrame(row)
if contribution_type == "both":
contribution_type = ["positive", "negative"]
else:
contribution_type = [contribution_type]
if columns is None:
picked_features = []
if "positive" in contribution_type:
positive_features = sorted(filter(lambda pair: pair[1] >= 0, contributions),
key=lambda pair: pair[1])
picked_features.extend(positive_features[-min(top_n_features, len(positive_features)):])
if "negative" in contribution_type:
negative_features = sorted(filter(lambda pair: pair[1] < 0, contributions),
key=lambda pair: pair[1])
picked_features.extend(negative_features[:min(top_n_features, len(negative_features))])
else:
columns = [frame.columns[col] if isinstance(col, int) else col for col in columns]
picked_cols = []
for feature in columns:
if feature in contribution_names:
picked_cols.append(feature)
else:
for contrib in contribution_names:
if contrib.startswith(feature + "."):
picked_cols.append(contrib)
picked_features = [pair for pair in contributions if pair[0] in picked_cols]
picked_features = sorted(picked_features, key=lambda pair: pair[1])
if len(picked_features) < len(contributions):
contribution_subset_note = " using {} out of {} contributions".format(
len(picked_features), len(contributions))
else:
contribution_subset_note = ""
contributions = dict(
feature=np.array(
["{}={}".format(pair[0], str(row.get(pair[0])[0])) for pair in picked_features]),
value=np.array([pair[1][0] for pair in picked_features])
)
plt.figure(figsize=figsize)
plt.barh(range(contributions["feature"].shape[0]), contributions["value"], fc="#b3ddf2")
plt.grid(True)
plt.axvline(0, c="black")
plt.xlabel("SHAP value")
plt.ylabel("Feature")
plt.yticks(range(contributions["feature"].shape[0]), contributions["feature"])
plt.title("SHAP explanation for \"{}\" on row {}{}\nprediction: {}".format(
model.model_id,
row_index,
contribution_subset_note,
prediction
))
plt.gca().set_axisbelow(True)
fig = plt.gcf()
return fig
elif plot_type == "breakdown":
if columns is None:
if top_n_features + 1 < len(contributions):
contributions = contributions[:top_n_features] + [
("Remaining Features", sum(map(lambda pair: pair[1], contributions[top_n_features:])))]
else:
picked_cols = []
columns = [frame.columns[col] if isinstance(col, int) else col for col in columns]
for feature in columns:
if feature in contribution_names:
picked_cols.append(feature)
else:
for contrib in contribution_names:
if contrib.startswith(feature + "."):
picked_cols.append(contrib)
rest = np.array(sum(pair[1] for pair in contributions if pair[0] not in picked_cols))
contributions = [pair for pair in contributions if pair[0] in picked_cols]
if len(contribution_names) - 1 > len(picked_cols): # Contribution names contain "BiasTerm" as well
contributions += [("Remaining Features", rest)]
contributions = contributions[::-1]
contributions = dict(
feature=np.array([pair[0] for pair in contributions]),
value=np.array([pair[1][0] for pair in contributions]),
color=np.array(["g" if pair[1] >= 0 else "r" for pair in contributions])
)
contributions["cummulative_value"] = [bias] + list(
contributions["value"].cumsum()[:-1] + bias)
plt.figure(figsize=figsize)
plt.barh(contributions["feature"], contributions["value"],
left=contributions["cummulative_value"],
color=contributions["color"])
plt.axvline(prediction, label="Prediction")
plt.axvline(bias, linestyle="dotted", color="gray", label="Bias")
plt.vlines(contributions["cummulative_value"][1:],
ymin=[y - 0.4 for y in range(contributions["value"].shape[0])],
ymax=[y + 1.4 for y in range(contributions["value"].shape[0])])
plt.legend()
plt.grid(True)
xlim = plt.xlim()
xlim_diff = xlim[1] - xlim[0]
plt.xlim((xlim[0] - 0.02 * xlim_diff, xlim[1] + 0.02 * xlim_diff))
plt.xlabel("SHAP value")
plt.ylabel("Feature")
plt.gca().set_axisbelow(True)
fig = plt.gcf()
return fig
def _get_top_n_levels(column, top_n):
# type: (h2o.H2OFrame, int) -> List[str]
"""
Get top_n levels from factor column based on their frequency.
:param column: string containing column name
:param top_n: maximum number of levels to be returned
:returns: list of levels
"""
counts = column.table().sort("Count", ascending=[False])[:, 0]
return [
level[0]
for level in counts[:min(counts.nrow, top_n), :].as_data_frame(
use_pandas=False, header=False)
]
def _factor_mapper(mapping):
# type: (Dict) -> Callable
"""
Helper higher order function returning function that applies mapping to each element.
:param mapping: dictionary that maps factor names to floats (for NaN; other values are integers)
:returns: function to be applied on iterable
"""
def _(column):
return [mapping.get(entry, float("nan")) for entry in column]
return _
def _add_histogram(frame, column, add_rug=True, add_histogram=True, levels_order=None):
# type: (H2OFrame, str, bool, bool) -> None
"""
Helper function to add rug and/or histogram to a plot
:param frame: H2OFrame
:param column: string containing column name
:param add_rug: if True, adds rug
:param add_histogram: if True, adds histogram
:returns: None
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
ylims = plt.ylim()
nf = NumpyFrame(frame[column])
if nf.isfactor(column) and levels_order is not None:
new_mapping = dict(zip(levels_order, range(len(levels_order))))
mapping = _factor_mapper({k: new_mapping[v] for k, v in nf.from_num_to_factor(column).items()})
else:
def mapping(x):
return x
if add_rug:
plt.plot(mapping(nf[column]),
[ylims[0] for _ in range(frame.nrow)],
"|", color="k", alpha=0.2, ms=20)
if add_histogram:
if nf.isfactor(column):
cnt = Counter(nf[column][np.isfinite(nf[column])])
hist_x = np.array(list(cnt.keys()), dtype=float)
hist_y = np.array(list(cnt.values()), dtype=float)
width = 1
else:
hist_y, hist_x = np.histogram(
mapping(nf[column][np.isfinite(nf[column])]),
bins=20)
hist_x = hist_x[:-1].astype(float)
hist_y = hist_y.astype(float)
width = hist_x[1] - hist_x[0]
plt.bar(mapping(hist_x),
hist_y / hist_y.max() * ((ylims[1] - ylims[0]) / 1.618), # ~ golden ratio
bottom=ylims[0],
align="center" if nf.isfactor(column) else "edge",
width=width, color="gray", alpha=0.2)
if nf.isfactor(column):
plt.xticks(mapping(range(nf.nlevels(column))), nf.levels(column))
plt.ylim(ylims)
def pd_plot(
model, # type: h2o.model.model_base.ModelBase
frame, # type: h2o.H2OFrame
column, # type: str
row_index=None, # type: Optional[int]
target=None, # type: Optional[str]
max_levels=30, # type: int
figsize=(16, 9), # type: Union[Tuple[float], List[float]]
colormap="Dark2", # type: str
):
"""
Plot partial dependence plot.
Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable
on the response. The effect of a variable is measured in change in the mean response.
PDP assumes independence between the feature for which is the PDP computed and the rest.
:param model: H2O Model object
:param frame: H2OFrame
:param column: string containing column name
:param row_index: if None, do partial dependence, if integer, do individual
conditional expectation for the row specified by this integer
:param target: (only for multinomial classification) for what target should the plot be done
:param max_levels: maximum number of factor levels to show
:param figsize: figure size; passed directly to matplotlib
:param colormap: colormap name; used to get just the first color to keep the api and color scheme similar with
pd_multi_plot
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.estimators import H2OGradientBoostingEstimator
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train a GBM
>>> gbm = H2OGradientBoostingEstimator()
>>> gbm.train(y=response, training_frame=train)
>>>
>>> # Create partial dependence plot
>>> gbm.pd_plot(test, column="alcohol")
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
is_factor = frame[column].isfactor()[0]
if is_factor:
if frame[column].nlevels()[0] > max_levels:
levels = _get_top_n_levels(frame[column], max_levels)
if row_index is not None:
levels = list(set(levels + [frame[row_index, column]]))
frame = frame[(frame[column].isin(levels)), :]
# decrease the number of levels to the actual number of levels in the subset
frame[column] = frame[column].ascharacter().asfactor()
if target is not None and not isinstance(target, list):
target = [target]
color = plt.get_cmap(colormap)(0)
with no_progress():
plt.figure(figsize=figsize)
is_factor = frame[column].isfactor()[0]
if is_factor:
factor_map = _factor_mapper(NumpyFrame(frame[column]).from_factor_to_num(column))
tmp = NumpyFrame(
model.partial_plot(frame, cols=[column], plot=False,
row_index=row_index, targets=target,
nbins=20 if not is_factor else 1 + frame[column].nlevels()[0])[0])
encoded_col = tmp.columns[0]
if is_factor:
plt.errorbar(factor_map(tmp.get(encoded_col)), tmp["mean_response"],
yerr=tmp["stddev_response"], fmt='o', color=color,
ecolor=color, elinewidth=3, capsize=0, markersize=10)
else:
plt.plot(tmp[encoded_col], tmp["mean_response"], color=color)
plt.fill_between(tmp[encoded_col], tmp["mean_response"] - tmp["stddev_response"],
tmp["mean_response"] + tmp["stddev_response"], color=color, alpha=0.2)
_add_histogram(frame, column)
if row_index is None:
plt.title("Partial Dependence plot for \"{}\"{}".format(
column,
" with target = \"{}\"".format(target[0]) if target else ""
))
plt.ylabel("Mean Response")
else:
if is_factor:
plt.axvline(factor_map([frame[row_index, column]]), c="k", linestyle="dotted",
label="Instance value")
else:
plt.axvline(frame[row_index, column], c="k", linestyle="dotted",
label="Instance value")
plt.title("Individual Conditional Expectation for column \"{}\" and row {}{}".format(
column,
row_index,
" with target = \"{}\"".format(target[0]) if target else ""
))
plt.ylabel("Response")
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
plt.xlabel(column)
plt.grid(True)
if is_factor:
plt.xticks(rotation=45, rotation_mode="anchor", ha="right")
fig = plt.gcf()
return fig
[docs]def pd_multi_plot(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.model_base]]
frame, # type: h2o.H2OFrame
column, # type: str
best_of_family=True, # type: bool
row_index=None, # type: Optional[int]
target=None, # type: Optional[str]
max_levels=30, # type: int
figsize=(16, 9), # type: Union[Tuple[float], List[float]]
colormap="Dark2", # type: str
markers=["o", "v", "s", "P", "*", "D", "X", "^", "<", ">", "."] # type: List[str]
): # type: (...) -> plt.Figure
"""
Plot partial dependencies of a variable across multiple models.
Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable
on the response. The effect of a variable is measured in change in the mean response.
PDP assumes independence between the feature for which is the PDP computed and the rest.
:param models: H2O AutoML object, or list of H2O models
:param frame: H2OFrame
:param column: string containing column name
:param best_of_family: if True, show only the best models per family
:param row_index: if None, do partial dependence, if integer, do individual
conditional expectation for the row specified by this integer
:param target: (only for multinomial classification) for what target should the plot be done
:param max_levels: maximum number of factor levels to show
:param figsize: figure size; passed directly to matplotlib
:param colormap: colormap name
:param markers: List of markers to use for factors, when it runs out of possible markers the last in
this list will get reused
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.automl import H2OAutoML
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train an H2OAutoML
>>> aml = H2OAutoML(max_models=10)
>>> aml.train(y=response, training_frame=train)
>>>
>>> # Create a partial dependence plot
>>> aml.pd_multi_plot(test, column="alcohol")
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
if target is not None:
if isinstance(target, (list, tuple)):
if len(target) > 1:
raise ValueError("Only one target can be specified!")
target = target[0]
target = [target]
if isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin):
all_models = [model_id[0] for model_id in models.leaderboard[:, "model_id"]
.as_data_frame(use_pandas=False, header=False)]
else:
all_models = models
is_factor = frame[column].isfactor()[0]
if is_factor:
if frame[column].nlevels()[0] > max_levels:
levels = _get_top_n_levels(frame[column], max_levels)
if row_index is not None:
levels = list(set(levels + [frame[row_index, column]]))
frame = frame[(frame[column].isin(levels)), :]
# decrease the number of levels to the actual number of levels in the subset
frame[column] = frame[column].ascharacter().asfactor()
if best_of_family:
models = _first_of_family(all_models)
else:
models = all_models
models = [m if isinstance(m, h2o.model.ModelBase) else h2o.get_model(m) for m in models]
colors = plt.get_cmap(colormap, len(models))(list(range(len(models))))
with no_progress():
plt.figure(figsize=figsize)
is_factor = frame[column].isfactor()[0]
if is_factor:
factor_map = _factor_mapper(NumpyFrame(frame[column]).from_factor_to_num(column))
marker_map = dict(zip(range(len(markers) - 1), markers[:-1]))
model_ids = _shorten_model_ids([model.model_id for model in models])
for i, model in enumerate(models):
tmp = NumpyFrame(
model.partial_plot(frame, cols=[column], plot=False,
row_index=row_index, targets=target,
nbins=20 if not is_factor else 1 + frame[column].nlevels()[0])[0])
encoded_col = tmp.columns[0]
if is_factor:
plt.scatter(factor_map(tmp.get(encoded_col)), tmp["mean_response"],
color=[colors[i]], label=model_ids[i],
marker=marker_map.get(i, markers[-1]))
else:
plt.plot(tmp[encoded_col], tmp["mean_response"], color=colors[i],
label=model_ids[i])
_add_histogram(frame, column)
if row_index is None:
plt.title("Partial Dependence plot for \"{}\"{}".format(
column,
" with target = \"{}\"".format(target[0]) if target else ""
))
plt.ylabel("Mean Response")
else:
if is_factor:
plt.axvline(factor_map([frame[row_index, column]]), c="k", linestyle="dotted",
label="Instance value")
else:
plt.axvline(frame[row_index, column], c="k", linestyle="dotted",
label="Instance value")
plt.title("Individual Conditional Expectation for column \"{}\" and row {}{}".format(
column,
row_index,
" with target = \"{}\"".format(target[0]) if target else ""
))
plt.ylabel("Response")
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.xlabel(column)
plt.grid(True)
if is_factor:
plt.xticks(rotation=45, rotation_mode="anchor", ha="right")
fig = plt.gcf()
return fig
def ice_plot(
model, # type: h2o.model.ModelBase
frame, # type: h2o.H2OFrame
column, # type: str
target=None, # type: Optional[str]
max_levels=30, # type: int
figsize=(16, 9), # type: Union[Tuple[float], List[float]]
colormap="plasma", # type: str
): # type: (...) -> plt.Figure
"""
Plot Individual Conditional Expectations (ICE) for each decile
Individual conditional expectations (ICE) plot gives a graphical depiction of the marginal
effect of a variable on the response. ICE plot is similar to partial dependence plot (PDP),
PDP shows the average effect of a feature while ICE plot shows the effect for a single
instance. The following plot shows the effect for each decile. In contrast to partial
dependence plot, ICE plot can provide more insight especially when there is stronger feature interaction.
:param model: H2OModel
:param frame: H2OFrame
:param column: string containing column name
:param target: (only for multinomial classification) for what target should the plot be done
:param max_levels: maximum number of factor levels to show
:param figsize: figure size; passed directly to matplotlib
:param colormap: colormap name
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.estimators import H2OGradientBoostingEstimator
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train a GBM
>>> gbm = H2OGradientBoostingEstimator()
>>> gbm.train(y=response, training_frame=train)
>>>
>>> # Create the individual conditional expectations plot
>>> gbm.ice_plot(test, column="alcohol")
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
if target is not None:
if isinstance(target, (list, tuple)):
if len(target) > 1:
raise ValueError("Only one target can be specified!")
target = target[0]
target = [target]
with no_progress():
frame = frame.sort(model.actual_params["response_column"])
is_factor = frame[column].isfactor()[0]
if is_factor:
if frame[column].nlevels()[0] > max_levels:
levels = _get_top_n_levels(frame[column], max_levels)
frame = frame[(frame[column].isin(levels)), :]
# decrease the number of levels to the actual number of levels in the subset
frame[column] = frame[column].ascharacter().asfactor()
factor_map = _factor_mapper(NumpyFrame(frame[column]).from_factor_to_num(column))
deciles = [int(round(frame.nrow * dec / 10)) for dec in range(11)]
colors = plt.get_cmap(colormap, 11)(list(range(11)))
plt.figure(figsize=figsize)
for i, index in enumerate(deciles):
tmp = NumpyFrame(
model.partial_plot(
frame,
cols=[column],
plot=False,
row_index=index,
targets=target,
nbins=20 if not is_factor else 1 + frame[column].nlevels()[0]
)[0]
)
encoded_col = tmp.columns[0]
if is_factor:
plt.scatter(factor_map(tmp.get(encoded_col)), tmp["mean_response"],
color=[colors[i]],
label="{}th Percentile".format(i * 10))
else:
plt.plot(tmp[encoded_col], tmp["mean_response"], color=colors[i],
label="{}th Percentile".format(i * 10))
tmp = NumpyFrame(
model.partial_plot(
frame,
cols=[column],
plot=False,
targets=target,
nbins=20 if not is_factor else 1 + frame[column].nlevels()[0]
)[0]
)
if is_factor:
plt.scatter(factor_map(tmp.get(encoded_col)), tmp["mean_response"], color="k",
label="Partial Dependence")
else:
plt.plot(tmp[encoded_col], tmp["mean_response"], color="k", linestyle="dashed",
label="Partial Dependence")
_add_histogram(frame, column)
plt.title("Individual Conditional Expectation for \"{}\"\non column \"{}\"{}".format(
model.model_id,
column,
" with target = \"{}\"".format(target[0]) if target else ""
))
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.grid(True)
if is_factor:
plt.xticks(rotation=45, rotation_mode="anchor", ha="right")
fig = plt.gcf()
return fig
def _has_varimp(model):
# type: (Union[str, h2o.model.ModelBase]) -> bool
"""
Does model have varimp?
:param model: model or a string containing model_id
:returns: bool
"""
return _get_algorithm(model) not in ["stackedensemble", "naivebayes"]
def _get_xy(model):
# type: (h2o.model.ModelBase) -> Tuple[List[str], str]
"""
Get features (x) and the response column (y).
:param model: H2O Model
:returns: tuple (x, y)
"""
y = model.actual_params["response_column"]
x = [feature for feature in model._model_json["output"]["names"]
if feature not in y]
return x, y
def _consolidate_varimps(model):
# type (h2o.model.ModelBase) -> Dict
"""
Get variable importances just for the columns that are present in the data set, i.e.,
when an encoded variables such as "column_name.level_name" are encountered, those variable
importances are summed to "column_name" variable.
:param model: H2O Model
:returns: dictionary with variable importances
"""
x, y = _get_xy(model)
varimp = {line[0]: line[3] for line in model.varimp()}
consolidated_varimps = {k: v for k, v in varimp.items() if k in x}
to_process = {k: v for k, v in varimp.items() if k not in x}
for feature in to_process.keys():
col_parts = feature.split(".")
for i in range(1, len(col_parts) + 1)[::-1]:
if ".".join(col_parts[:i]) in x:
column = ".".join(col_parts[:i])
consolidated_varimps[column] = consolidated_varimps.get(column, 0) + to_process[
feature]
break
else:
raise RuntimeError("Cannot find feature {}".format(feature))
total_value = sum(consolidated_varimps.values())
if total_value != 1:
consolidated_varimps = {k: v / total_value for k, v in consolidated_varimps.items()}
for col in x:
if col not in consolidated_varimps:
consolidated_varimps[col] = 0
return consolidated_varimps
def _interpretable(model):
# type: (Union[str, h2o.model.ModelBase]) -> bool
"""
Returns True if model_id is easily interpretable.
:param model: model or a string containing a model_id
:returns: bool
"""
return _get_algorithm(model) in ["glm", "gam", "rulefit"]
def _flatten_list(items):
# type: (list) -> Generator[Any, None, None]
"""
Flatten nested lists.
:param items: a list potentionally containing other lists
:returns: flattened list
"""
for x in items:
if isinstance(x, list):
for xx in _flatten_list(x):
yield xx
else:
yield x
def _calculate_clustering_indices(matrix):
# type: (np.ndarray) -> list
"""
Get a hierarchical clustering leaves order calculated from the clustering of columns.
:param matrix: numpy.ndarray
:returns: list of indices of columns
"""
cols = matrix.shape[1]
dist = np.zeros((cols, cols))
for x in range(cols):
for y in range(cols):
if x < y:
dist[x, y] = np.sum(np.power(matrix[:, x] - matrix[:, y], 2))
dist[y, x] = dist[x, y]
elif x == y:
dist[x, x] = float("inf")
indices = [[i] for i in range(cols)]
for i in range(cols - 1):
idx = np.argmin(dist)
x = idx % cols
y = idx // cols
assert x != y
indices[x].append(indices[y])
indices[y] = []
dist[x, :] = np.min(dist[[x, y], :], axis=0)
dist[y, :] = float("inf")
dist[:, y] = float("inf")
dist[x, x] = float("inf")
result = list(_flatten_list(indices))
assert len(result) == cols
return result
[docs]def varimp_heatmap(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.ModelBase]]
top_n=20, # type: int
figsize=(16, 9), # type: Tuple[float]
cluster=True, # type: bool
colormap="RdYlBu_r" # type: str
):
# type: (...) -> plt.Figure
"""
Variable Importance Heatmap across a group of models
Variable importance heatmap shows variable importance across multiple models.
Some models in H2O return variable importance for one-hot (binary indicator)
encoded versions of categorical columns (e.g. Deep Learning, XGBoost). In order
for the variable importance of categorical columns to be compared across all model
types we compute a summarization of the the variable importance across all one-hot
encoded features and return a single variable importance for the original categorical
feature. By default, the models and variables are ordered by their similarity.
:param models: H2O AutoML object or list of H2O models
:param top_n: use just top n models (applies only when used with H2OAutoML)
:param figsize: figsize: figure size; passed directly to matplotlib
:param cluster: if True, cluster the models and variables
:param colormap: colormap to use
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.automl import H2OAutoML
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train an H2OAutoML
>>> aml = H2OAutoML(max_models=10)
>>> aml.train(y=response, training_frame=train)
>>>
>>> # Create the variable importance heatmap
>>> aml.varimp_heatmap()
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
if isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin):
model_ids = [model_id[0] for model_id in models.leaderboard[:, "model_id"]
.as_data_frame(use_pandas=False, header=False) if _has_varimp(model_id[0])]
models = [
h2o.get_model(model_id)
for model_id in model_ids[:min(top_n, len(model_ids))]
]
else:
top_n = len(models)
# Filter out models that don't have varimp
models = [model for model in models if _has_varimp(model)]
models = models[:min(len(models), top_n)]
if len(models) == 0:
raise RuntimeError("No model with variable importance")
varimps = [_consolidate_varimps(model) for model in models]
x, y = _get_xy(models[0])
varimps = np.array([[varimp[col] for col in x] for varimp in varimps])
if cluster and len(models) > 2:
order = _calculate_clustering_indices(varimps)
x = [x[i] for i in order]
varimps = varimps[:, order]
varimps = varimps.transpose()
order = _calculate_clustering_indices(varimps)
models = [models[i] for i in order]
varimps = varimps[:, order]
else:
varimps = varimps.transpose()
plt.figure(figsize=figsize)
plt.imshow(varimps, cmap=plt.get_cmap(colormap))
plt.xticks(range(len(models)), _shorten_model_ids([model.model_id for model in models]),
rotation=45, rotation_mode="anchor", ha="right")
plt.yticks(range(len(x)), x)
plt.colorbar()
plt.xlabel("Model Id")
plt.ylabel("Feature")
plt.title("Variable Importance Heatmap")
plt.grid(False)
fig = plt.gcf()
return fig
[docs]def model_correlation_heatmap(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.ModelBase]]
frame, # type: h2o.H2OFrame
top_n=20, # type: int
cluster_models=True, # type: bool
triangular=True, # type: bool
figsize=(13, 13), # type: Tuple[float]
colormap="RdYlBu_r" # type: str
):
# type: (...) -> plt.Figure
"""
Model Prediction Correlation Heatmap
This plot shows the correlation between the predictions of the models.
For classification, frequency of identical predictions is used. By default, models
are ordered by their similarity (as computed by hierarchical clustering).
:param models: H2OAutoML object or a list of H2O models
:param frame: H2OFrame
:param top_n: show just top n models (applies only when used with H2OAutoML)
:param cluster_models: if True, cluster the models
:param triangular: make the heatmap triangular
:param figsize: figsize: figure size; passed directly to matplotlib
:param colormap: colormap to use
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.automl import H2OAutoML
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train an H2OAutoML
>>> aml = H2OAutoML(max_models=10)
>>> aml.train(y=response, training_frame=train)
>>>
>>> # Create the model correlation heatmap
>>> aml.model_correlation_heatmap(test)
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
if isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin):
model_ids = [model_id[0] for model_id in models.leaderboard[:, "model_id"]
.as_data_frame(use_pandas=False, header=False)]
models = [
h2o.get_model(model_id)
for model_id in model_ids[:min(top_n, len(model_ids))]
]
else:
top_n = len(models)
is_classification = frame[models[0].actual_params["response_column"]].isfactor()[0]
models = models[:min(len(models), top_n)]
predictions = np.empty((len(models), frame.nrow),
dtype=np.object if is_classification else np.float)
with no_progress():
for idx, model in enumerate(models):
predictions[idx, :] = np.array(model.predict(frame)["predict"]
.as_data_frame(use_pandas=False, header=False)) \
.reshape(frame.nrow)
if is_classification:
corr = np.zeros((len(models), len(models)))
for i in range(len(models)):
for j in range(len(models)):
if i <= j:
corr[i, j] = (predictions[i, :] == predictions[j, :]).mean()
corr[j, i] = corr[i, j]
else:
corr = np.corrcoef(predictions)
if cluster_models:
order = _calculate_clustering_indices(corr)
corr = corr[order, :]
corr = corr[:, order]
models = [models[i] for i in order]
if triangular:
corr = np.where(np.triu(np.ones_like(corr), k=1).astype(bool), float("nan"), corr)
plt.figure(figsize=figsize)
plt.imshow(corr, cmap=plt.get_cmap(colormap), clim=(0.5, 1))
plt.xticks(range(len(models)), _shorten_model_ids([model.model_id for model in models]),
rotation=45, rotation_mode="anchor", ha="right")
plt.yticks(range(len(models)), _shorten_model_ids([model.model_id for model in models]))
plt.colorbar()
plt.title("Model Correlation")
plt.xlabel("Model Id")
plt.ylabel("Model Id")
plt.grid(False)
for t in plt.gca().xaxis.get_ticklabels():
if _interpretable(t.get_text()):
t.set_color("red")
for t in plt.gca().yaxis.get_ticklabels():
if _interpretable(t.get_text()):
t.set_color("red")
fig = plt.gcf()
return fig
def residual_analysis_plot(
model, # type: h2o.model.ModelBase
frame, # type: h2o.H2OFrame
figsize=(16, 9) # type: Tuple[float]
):
# type: (...) -> plt.Figure
"""
Residual Analysis
Do Residual Analysis and plot the fitted values vs residuals on a test dataset.
Ideally, residuals should be randomly distributed. Patterns in this plot can indicate
potential problems with the model selection, e.g., using simpler model than necessary,
not accounting for heteroscedasticity, autocorrelation, etc. If you notice "striped"
lines of residuals, that is just an indication that your response variable was integer
valued instead of real valued.
:param model: H2OModel
:param frame: H2OFrame
:param figsize: figsize: figure size; passed directly to matplotlib
:returns: a matplotlib figure object
:examples:
>>> import h2o
>>> from h2o.estimators import H2OGradientBoostingEstimator
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train a GBM
>>> gbm = H2OGradientBoostingEstimator()
>>> gbm.train(y=response, training_frame=train)
>>>
>>> # Create the residual analysis plot
>>> gbm.residual_analysis_plot(test)
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
_, y = _get_xy(model)
with no_progress():
predicted = NumpyFrame(model.predict(frame)["predict"])
actual = NumpyFrame(frame[y])
residuals = predicted["predict"] - actual[y]
plt.figure(figsize=figsize)
plt.axhline(y=0, c="k")
plt.scatter(predicted["predict"], residuals)
plt.grid(True)
plt.xlabel("Fitted")
plt.ylabel("Residuals")
plt.title("Residual Analysis for \"{}\"".format(model.model_id))
# Rugs
xlims = plt.xlim()
ylims = plt.ylim()
plt.plot([xlims[0] for _ in range(frame.nrow)], residuals,
"_", color="k", alpha=0.2, ms=20)
plt.plot(predicted.get("predict"),
[ylims[0] for _ in range(frame.nrow)],
"|", color="k", alpha=0.2, ms=20)
# Fit line
X = np.vstack([predicted["predict"], np.ones(frame.nrow)]).T
slope, const = np.linalg.lstsq(X, residuals, rcond=-1)[0]
plt.plot(xlims, [xlims[0] * slope + const, xlims[1] * slope + const], c="b")
plt.xlim(xlims)
plt.ylim(ylims)
fig = plt.gcf()
return fig
def _is_tree_model(model):
# type: (Union[str, h2o.model.ModelBase]) -> bool
"""
Is the model a tree model id?
:param model: model or astring containing a model_id
:returns: bool
"""
return _get_algorithm(model) in ["drf", "gbm", "xgboost"]
def _get_tree_models(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.ModelBase]]
top_n=float("inf") # type: Union[float, int]
):
# type: (...) -> List[h2o.model.ModelBase]
"""
Get list of top_n tree models.
:param models: either H2OAutoML object or list of H2O Models
:param top_n: maximum number of tree models to return
:returns: list of tree models
"""
if isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin):
model_ids = [model_id[0] for model_id in models.leaderboard[:, "model_id"]
.as_data_frame(use_pandas=False, header=False)
if _is_tree_model(model_id[0])
]
return [
h2o.get_model(model_id)
for model_id in model_ids[:min(top_n, len(model_ids))]
]
elif isinstance(models, h2o.model.ModelBase):
if _is_tree_model(models):
return [models]
else:
return []
models = [
model
for model in models
if _is_tree_model(model)
]
return models[:min(len(models), top_n)]
def _get_leaderboard(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.ModelBase]]
frame, # type: h2o.H2OFrame
row_index=None, # type: Optional[int]
top_n=20 # type: int
):
# type: (...) -> h2o.H2OFrame
"""
Get leaderboard either from AutoML or list of models.
:param models: H2OAutoML object or list of models
:param frame: H2OFrame used for calculating prediction when row_index is specified
:param row_index: if specified, calculated prediction for the given row
:param top_n: show just top n models in the leaderboard
:returns: H2OFrame
"""
if isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin):
leaderboard = h2o.automl.get_leaderboard(models, extra_columns="ALL")
leaderboard = leaderboard.head(rows=min(leaderboard.nrow, top_n))
if row_index is not None:
model_ids = [m[0] for m in
leaderboard["model_id"].as_data_frame(use_pandas=False, header=False)]
with no_progress():
preds = h2o.get_model(model_ids[0]).predict(frame[row_index, :])
for model_id in model_ids[1:]:
preds = preds.rbind(h2o.get_model(model_id).predict(frame[row_index, :]))
leaderboard = leaderboard.cbind(preds)
return leaderboard
else:
METRICS = [
"MSE",
"RMSE",
"mae",
"rmsle",
"mean_per_class_error",
"logloss",
]
from collections import defaultdict
result = defaultdict(list)
predictions = []
with no_progress():
for model in models:
result["model_id"].append(model.model_id)
perf = model.model_performance(frame)
for metric in METRICS:
result[metric.lower()].append(perf._metric_json.get(metric))
if row_index is not None:
predictions.append(model.predict(frame[row_index, :]))
for metric in METRICS:
if not any(result[metric]):
del result[metric]
leaderboard = h2o.H2OFrame(result)[["model_id"] + [m.lower()
for m in METRICS
if m.lower() in result]]
if row_index is not None:
preds = predictions[0]
for pr in predictions[1:]:
preds = preds.rbind(pr)
leaderboard = leaderboard.cbind(preds)
return leaderboard.sort("mse").head(rows=min(top_n, leaderboard.nrow))
def _process_explanation_lists(
exclude_explanations, # type: Union[str, List[str]]
include_explanations, # type: Union[str, List[str]]
possible_explanations # type: List[str]
):
# type: (...) -> List[str]
"""
Helper function to process explanation lists.
:param exclude_explanations: list of model explanations to exclude
:param include_explanations: list of model explanations to include
:param possible_explanations: list of all possible explanations
:returns: list of actual explanations
"""
if not isinstance(include_explanations, list):
include_explanations = [include_explanations]
if not isinstance(exclude_explanations, list):
exclude_explanations = [exclude_explanations]
include_explanations = [exp.lower() for exp in include_explanations]
exclude_explanations = [exp.lower() for exp in exclude_explanations]
if len(exclude_explanations) == 0:
explanations = possible_explanations if "all" in include_explanations \
else include_explanations
else:
if "all" not in include_explanations:
raise RuntimeError(
"Only one of include_explanations or exclude_explanation should be specified!")
for exp in exclude_explanations:
if exp not in possible_explanations:
raise RuntimeError("Unknown explanation \"{}\". Please use one of: {}".format(
exp, possible_explanations))
explanations = [exp for exp in possible_explanations if exp not in exclude_explanations]
return explanations
def _process_models_input(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List, h2o.model.ModelBase]
frame, # type: h2o.H2OFrame
):
# type: (...) -> Tuple[bool, List, bool, bool, bool, List, List]
"""
Helper function to get basic information about models/H2OAutoML.
:param models: H2OAutoML/List of models/H2O Model
:param frame: H2O Frame
:returns: tuple (is_aml, models_to_show, classification, multinomial_classification,
multiple_models, targets, tree_models_to_show)
"""
is_aml = isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin)
if is_aml:
models_to_show = [models.leader]
multiple_models = models.leaderboard.nrow > 1
elif isinstance(models, h2o.model.ModelBase):
models_to_show = [models]
multiple_models = False
else:
models_to_show = models
multiple_models = len(models) > 1
tree_models_to_show = _get_tree_models(models, 1 if is_aml else float("inf"))
y = _get_xy(models_to_show[0])[1]
classification = frame[y].isfactor()[0]
multinomial_classification = classification and frame[y].nlevels()[0] > 2
targets = [None]
if multinomial_classification:
targets = [[t] for t in frame[y].levels()[0]]
return is_aml, models_to_show, classification, multinomial_classification, \
multiple_models, targets, tree_models_to_show
def _custom_args(user_specified, **kwargs):
# type: (Optional[Dict], **Any) -> Dict
"""
Helper function to make customization of arguments easier.
:param user_specified: dictionary of user specified overrides or None
:param kwargs: default values, such as, `top_n=5`
:returns: dictionary of actual arguments to use
"""
if user_specified is None:
user_specified = dict()
result = dict(**kwargs)
result.update(user_specified)
return result
[docs]def explain(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.ModelBase]]
frame, # type: h2o.H2OFrame
columns=None, # type: Optional[Union[List[int], List[str]]]
top_n_features=5, # type: int
include_explanations="ALL", # type: Union[str, List[str]]
exclude_explanations=[], # type: Union[str, List[str]]
plot_overrides=dict(), # type: Dict
figsize=(16, 9), # type: Tuple[float]
render=True, # type: bool
qualitative_colormap="Dark2", # type: str
sequential_colormap="RdYlBu_r" # type: str
):
# type: (...) -> H2OExplanation
"""
Generate model explanations on frame data set.
The H2O Explainability Interface is a convenient wrapper to a number of explainabilty
methods and visualizations in H2O. The function can be applied to a single model or group
of models and returns an object containing explanations, such as a partial dependence plot
or a variable importance plot. Most of the explanations are visual (plots).
These plots can also be created by individual utility functions/methods as well.
:param models: H2OAutoML object, H2OModel, or list of H2O models
:param frame: H2OFrame
:param columns: either a list of columns or column indices to show. If specified
parameter top_n_features will be ignored.
:param top_n_features: a number of columns to pick using variable importance (where applicable).
:param include_explanations: if specified, return only the specified model explanations
(Mutually exclusive with exclude_explanations)
:param exclude_explanations: exclude specified model explanations
:param plot_overrides: overrides for individual model explanations
:param figsize: figure size; passed directly to matplotlib
:param render: if True, render the model explanations; otherwise model explanations are just returned
:returns: H2OExplanation containing the model explanations including headers and descriptions
:examples:
>>> import h2o
>>> from h2o.automl import H2OAutoML
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train an H2OAutoML
>>> aml = H2OAutoML(max_models=10)
>>> aml.train(y=response, training_frame=train)
>>>
>>> # Create the H2OAutoML explanation
>>> aml.explain(test)
>>>
>>> # Create the leader model explanation
>>> aml.leader.explain(test)
"""
plt = get_matplotlib_pyplot(False, raise_if_not_available=True)
is_aml, models_to_show, classification, multinomial_classification, multiple_models, \
targets, tree_models_to_show = _process_models_input(models, frame)
if columns is not None and isinstance(columns, list):
columns_of_interest = [frame.columns[col] if isinstance(col, int) else col for col in columns]
else:
columns_of_interest = None
models_with_varimp = [model for model in models_to_show if _has_varimp(model)]
if len(models_with_varimp) == 0 and is_aml:
models_with_varimp = [model_id[0] for model_id in models.leaderboard["model_id"]
.as_data_frame(use_pandas=False, header=False) if _has_varimp(model_id[0])]
models_with_varimp = [h2o.get_model(models_with_varimp[0])]
possible_explanations = [
"leaderboard",
"confusion_matrix",
"residual_analysis",
"varimp",
"varimp_heatmap",
"model_correlation_heatmap",
"shap_summary",
"pdp",
"ice"
]
explanations = _process_explanation_lists(
exclude_explanations=exclude_explanations,
include_explanations=include_explanations,
possible_explanations=possible_explanations
)
if render:
display = _display
else:
display = _dont_display
result = H2OExplanation()
if multiple_models and "leaderboard" in explanations:
result["leaderboard"] = H2OExplanation()
result["leaderboard"]["header"] = display(Header("Leaderboard"))
result["leaderboard"]["description"] = display(Description("leaderboard"))
result["leaderboard"]["data"] = display(_get_leaderboard(models, frame))
if classification:
if "confusion_matrix" in explanations:
result["confusion_matrix"] = H2OExplanation()
result["confusion_matrix"]["header"] = display(Header("Confusion Matrix"))
result["confusion_matrix"]["description"] = display(Description("confusion_matrix"))
result["confusion_matrix"]["subexplanations"] = H2OExplanation()
for model in models_to_show:
result["confusion_matrix"]["subexplanations"][model.model_id] = H2OExplanation()
result["confusion_matrix"]["subexplanations"][model.model_id]["header"] = display(
Header(model.model_id, 2))
result["confusion_matrix"]["subexplanations"][model.model_id]["plots"] = H2OExplanation()
if multinomial_classification:
result["confusion_matrix"]["subexplanations"][model.model_id]["plots"][model.model_id] = display(
model.confusion_matrix(
**_custom_args(plot_overrides.get("confusion_matrix"),
data=frame)))
else:
result["confusion_matrix"]["subexplanations"][model.model_id]["plots"][model.model_id] = display(
model.confusion_matrix())
else:
if "residual_analysis" in explanations:
result["residual_analysis"] = H2OExplanation()
result["residual_analysis"]["header"] = display(Header("Residual Analysis"))
result["residual_analysis"]["description"] = display(Description("residual_analysis"))
result["residual_analysis"]["plots"] = H2OExplanation()
for model in models_to_show:
result["residual_analysis"]["plots"][model.model_id] = display(
residual_analysis_plot(model,
frame,
**_custom_args(
plot_overrides.get(
"residual_analysis"),
figsize=figsize)))
if len(models_with_varimp) > 0 and "varimp" in explanations:
result["varimp"] = H2OExplanation()
result["varimp"]["header"] = display(Header("Variable Importance"))
result["varimp"]["description"] = display(Description("variable_importance"))
result["varimp"]["plots"] = H2OExplanation()
for model in models_with_varimp:
model.varimp_plot(server=True, **plot_overrides.get("varimp_plot", dict()))
varimp_plot = plt.gcf() # type: plt.Figure
varimp_plot.set_figwidth(figsize[0])
varimp_plot.set_figheight(figsize[1])
varimp_plot.gca().set_title("Variable Importance for \"{}\"".format(model.model_id))
result["varimp"]["plots"][model.model_id] = display(varimp_plot)
if columns_of_interest is None:
varimps = _consolidate_varimps(models_with_varimp[0])
columns_of_interest = sorted(varimps.keys(), key=lambda k: -varimps[k])[
:min(top_n_features, len(varimps))]
else:
if columns_of_interest is None:
columns_of_interest = _get_xy(models_to_show[0])[0]
if is_aml or len(models_to_show) > 1:
if "varimp_heatmap" in explanations:
result["varimp_heatmap"] = H2OExplanation()
result["varimp_heatmap"]["header"] = display(
Header("Variable Importance Heatmap"))
result["varimp_heatmap"]["description"] = display(
Description("varimp_heatmap"))
result["varimp_heatmap"]["plots"] = display(varimp_heatmap(
models,
**_custom_args(plot_overrides.get("varimp_heatmap"),
colormap=sequential_colormap,
figsize=figsize)))
if "model_correlation_heatmap" in explanations:
result["model_correlation_heatmap"] = H2OExplanation()
result["model_correlation_heatmap"]["header"] = display(Header("Model Correlation"))
result["model_correlation_heatmap"]["description"] = display(Description(
"model_correlation_heatmap"))
result["model_correlation_heatmap"]["plots"] = display(model_correlation_heatmap(
models, **_custom_args(plot_overrides.get("model_correlation_heatmap"),
frame=frame,
colormap=sequential_colormap,
figsize=figsize)))
# SHAP Summary
if len(tree_models_to_show) > 0 and not multinomial_classification \
and "shap_summary" in explanations:
result["shap_summary"] = H2OExplanation()
result["shap_summary"]["header"] = display(Header("SHAP Summary"))
result["shap_summary"]["description"] = display(Description("shap_summary"))
result["shap_summary"]["plots"] = H2OExplanation()
for tree_model in tree_models_to_show:
result["shap_summary"]["plots"][tree_model.model_id] = display(shap_summary_plot(
tree_model,
**_custom_args(
plot_overrides.get("shap_summary_plot"),
frame=frame,
figsize=figsize
)))
# PDP
if "pdp" in explanations:
if is_aml or multiple_models:
result["pdp"] = H2OExplanation()
result["pdp"]["header"] = display(Header("Partial Dependence Plots"))
result["pdp"]["description"] = display(Description("pdp"))
result["pdp"]["plots"] = H2OExplanation()
for column in columns_of_interest:
result["pdp"]["plots"][column] = H2OExplanation()
for target in targets:
pdp = display(pd_multi_plot(
models, column=column, target=target,
**_custom_args(plot_overrides.get("pdp"),
frame=frame,
figsize=figsize,
colormap=qualitative_colormap)))
if target is None:
result["pdp"]["plots"][column] = pdp
else:
result["pdp"]["plots"][column][target[0]] = pdp
else:
result["pdp"] = H2OExplanation()
result["pdp"]["header"] = display(Header("Partial Dependence Plots"))
result["pdp"]["description"] = display(Description("pdp"))
result["pdp"]["plots"] = H2OExplanation()
for column in columns_of_interest:
result["pdp"]["plots"][column] = H2OExplanation()
for target in targets:
fig = pd_plot(models_to_show[0], column=column, target=target,
**_custom_args(plot_overrides.get("pdp"),
frame=frame,
figsize=figsize,
colormap=qualitative_colormap))
if target is None:
result["pdp"]["plots"][column] = display(fig)
else:
result["pdp"]["plots"][column][target[0]] = display(fig)
# ICE
if "ice" in explanations and not classification:
result["ice"] = H2OExplanation()
result["ice"]["header"] = display(Header("Individual Conditional Expectation"))
result["ice"]["description"] = display(Description("ice"))
result["ice"]["plots"] = H2OExplanation()
for column in columns_of_interest:
result["ice"]["plots"][columns] = H2OExplanation()
for model in models_to_show:
result["ice"]["plots"][columns][model] = H2OExplanation()
for target in targets:
ice = display(
ice_plot(
model, column=column,
target=target,
**_custom_args(
plot_overrides.get("ice_plot"),
frame=frame,
figsize=figsize,
colormap=sequential_colormap
)))
if target is None:
result["ice"]["plots"][columns][model] = ice
else:
result["ice"]["plots"][columns][model][target[0]] = ice
return result
[docs]def explain_row(
models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, List[h2o.model.ModelBase]]
frame, # type: h2o.H2OFrame
row_index, # type: int
columns=None, # type: Optional[Union[List[int], List[str]]]
top_n_features=5, # type: int
include_explanations="ALL", # type: Union[str, List[str]]
exclude_explanations=[], # type: Union[str, List[str]]
plot_overrides=dict(), # type: Dict
qualitative_colormap="Dark2", # type: str
figsize=(16, 9), # type: Tuple[float]
render=True, # type: bool
):
# type: (...) -> H2OExplanation
"""
Generate model explanations on frame data set for a given instance.
Explain the behavior of a model or group of models with respect to a single row of data.
The function returns an object containing explanations, such as a partial dependence plot
or a variable importance plot. Most of the explanations are visual (plots).
These plots can also be created by individual utility functions/methods as well.
:param models: H2OAutoML object, H2OModel, or list of H2O models
:param frame: H2OFrame
:param row_index: row index of the instance to inspect
:param columns: either a list of columns or column indices to show. If specified
parameter top_n_features will be ignored.
:param top_n_features: a number of columns to pick using variable importance (where applicable).
:param include_explanations: if specified, return only the specified model explanations
(Mutually exclusive with exclude_explanations)
:param exclude_explanations: exclude specified model explanations
:param plot_overrides: overrides for individual model explanations
:param qualitative_colormap: a colormap name
:param figsize: figure size; passed directly to matplotlib
:param render: if True, render the model explanations; otherwise model explanations are just returned
:returns: H2OExplanation containing the model explanations including headers and descriptions
:examples:
>>> import h2o
>>> from h2o.automl import H2OAutoML
>>>
>>> h2o.init()
>>>
>>> # Import the wine dataset into H2O:
>>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
>>> df = h2o.import_file(f)
>>>
>>> # Set the response
>>> response = "quality"
>>>
>>> # Split the dataset into a train and test set:
>>> train, test = df.split_frame([0.8])
>>>
>>> # Train an H2OAutoML
>>> aml = H2OAutoML(max_models=10)
>>> aml.train(y=response, training_frame=train)
>>>
>>> # Create the H2OAutoML explanation
>>> aml.explain_row(test, row_index=0)
>>>
>>> # Create the leader model explanation
>>> aml.leader.explain_row(test, row_index=0)
"""
is_aml, models_to_show, _, multinomial_classification, multiple_models, \
targets, tree_models_to_show = _process_models_input(models, frame)
models_with_varimp = [model for model in models_to_show if _has_varimp(model)]
if len(models_with_varimp) == 0 and is_aml:
models_with_varimp = [model_id[0] for model_id in models.leaderboard["model_id"]
.as_data_frame(use_pandas=False, header=False) if _has_varimp(model_id[0])]
models_with_varimp = [h2o.get_model(models_with_varimp[0])]
if columns is not None and isinstance(columns, list):
columns_of_interest = [frame.columns[col] if isinstance(col, int) else col for col in columns]
else:
if len(models_with_varimp) > 0:
varimps = _consolidate_varimps(models_with_varimp[0])
columns_of_interest = sorted(varimps.keys(), key=lambda k: -varimps[k])[
:min(top_n_features, len(varimps))]
else:
import warnings
warnings.warn("No model with variable importance. Selecting all features to explain.")
columns_of_interest = _get_xy(models_to_show[0])[0]
possible_explanations = ["leaderboard", "shap_explain_row", "ice"]
explanations = _process_explanation_lists(
exclude_explanations=exclude_explanations,
include_explanations=include_explanations,
possible_explanations=possible_explanations
)
if render:
display = _display
else:
display = _dont_display
result = H2OExplanation()
if multiple_models and "leaderboard" in explanations:
result["leaderboard"] = H2OExplanation()
result["leaderboard"]["header"] = display(Header("Leaderboard"))
result["leaderboard"]["description"] = display(Description("leaderboard_row"))
result["leaderboard"]["data"] = display(_get_leaderboard(models, row_index=row_index,
**_custom_args(
plot_overrides.get("leaderboard"),
frame=frame)))
if len(tree_models_to_show) > 0 and not multinomial_classification and \
"shap_explain_row" in explanations:
result["shap_explain_row"] = H2OExplanation()
result["shap_explain_row"]["header"] = display(Header("SHAP Explanation"))
result["shap_explain_row"]["description"] = display(Description("shap_explain_row"))
for tree_model in tree_models_to_show:
result["shap_explain_row"][tree_model.model_id] = display(shap_explain_row_plot(
tree_model, row_index=row_index,
**_custom_args(plot_overrides.get("shap_explain_row"),
frame=frame, figsize=figsize)))
if "ice" in explanations and not multiple_models:
result["ice"] = H2OExplanation()
result["ice"]["header"] = display(Header("Individual Conditional Expectation"))
result["ice"]["description"] = display(Description("ice_row"))
result["ice"]["plots"] = H2OExplanation()
for column in columns_of_interest:
result["ice"]["plots"][column] = H2OExplanation()
for target in targets:
ice = display(pd_plot(
models_to_show[0], column=column,
row_index=row_index,
target=target,
**_custom_args(
plot_overrides.get("ice"),
frame=frame,
figsize=figsize,
colormap=qualitative_colormap
)))
if target is None:
result["ice"]["plots"][column] = ice
else:
result["ice"]["plots"][column][target[0]] = ice
return result