Given predicted values (target for regression, class-1 probabilities or binomial or per-class probabilities for multinomial), compute a model metrics object

h2o.make_metrics(
  predicted,
  actuals,
  domain = NULL,
  distribution = NULL,
  weights = NULL,
  auc_type = "NONE"
)

Arguments

predicted

An H2OFrame containing predictions

actuals

An H2OFrame containing actual values

domain

Vector with response factors for classification.

distribution

Distribution for regression.

weights

(optional) An H2OFrame containing observation weights.

auc_type

(optional) For multinomial classification you have to specify which type of agregated AUC/AUCPR will be used to calculate this metric.

Value

Returns an object of the H2OModelMetrics subclass.

Examples

# NOT RUN {
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(path = prostate_path)
prostate$CAPSULE <- as.factor(prostate$CAPSULE)
prostate_gbm <- h2o.gbm(3:9, "CAPSULE", prostate)
pred <- h2o.predict(prostate_gbm, prostate)[, 3] ## class-1 probability
h2o.make_metrics(pred, prostate$CAPSULE)
# }