#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric
[docs]class H2ODeepLearningEstimator(H2OEstimator):
"""
Deep Learning
Build a Deep Neural Network model using CPUs
Builds a feed-forward multilayer artificial neural network on an H2OFrame
:examples:
>>> from h2o.estimators.deeplearning import H2ODeepLearningEstimator
>>> rows = [[1,2,3,4,0], [2,1,2,4,1], [2,1,4,2,1],
... [0,1,2,34,1], [2,3,4,1,0]] * 50
>>> fr = h2o.H2OFrame(rows)
>>> fr[4] = fr[4].asfactor()
>>> model = H2ODeepLearningEstimator()
>>> model.train(x=range(4), y=4, training_frame=fr)
>>> model.logloss()
"""
algo = "deeplearning"
supervised_learning = True
_options_ = {'model_extensions': ['h2o.model.extensions.ScoringHistoryDL',
'h2o.model.extensions.VariableImportance'],
'verbose': True}
def __init__(self,
model_id=None, # type: Optional[Union[None, str, H2OEstimator]]
training_frame=None, # type: Optional[Union[None, str, H2OFrame]]
validation_frame=None, # type: Optional[Union[None, str, H2OFrame]]
nfolds=0, # type: int
keep_cross_validation_models=True, # type: bool
keep_cross_validation_predictions=False, # type: bool
keep_cross_validation_fold_assignment=False, # type: bool
fold_assignment="auto", # type: Literal["auto", "random", "modulo", "stratified"]
fold_column=None, # type: Optional[str]
response_column=None, # type: Optional[str]
ignored_columns=None, # type: Optional[List[str]]
ignore_const_cols=True, # type: bool
score_each_iteration=False, # type: bool
weights_column=None, # type: Optional[str]
offset_column=None, # type: Optional[str]
balance_classes=False, # type: bool
class_sampling_factors=None, # type: Optional[List[float]]
max_after_balance_size=5.0, # type: float
max_confusion_matrix_size=20, # type: int
checkpoint=None, # type: Optional[Union[None, str, H2OEstimator]]
pretrained_autoencoder=None, # type: Optional[Union[None, str, H2OEstimator]]
overwrite_with_best_model=True, # type: bool
use_all_factor_levels=True, # type: bool
standardize=True, # type: bool
activation="rectifier", # type: Literal["tanh", "tanh_with_dropout", "rectifier", "rectifier_with_dropout", "maxout", "maxout_with_dropout"]
hidden=[200, 200], # type: List[int]
epochs=10.0, # type: float
train_samples_per_iteration=-2, # type: int
target_ratio_comm_to_comp=0.05, # type: float
seed=-1, # type: int
adaptive_rate=True, # type: bool
rho=0.99, # type: float
epsilon=1e-08, # type: float
rate=0.005, # type: float
rate_annealing=1e-06, # type: float
rate_decay=1.0, # type: float
momentum_start=0.0, # type: float
momentum_ramp=1000000.0, # type: float
momentum_stable=0.0, # type: float
nesterov_accelerated_gradient=True, # type: bool
input_dropout_ratio=0.0, # type: float
hidden_dropout_ratios=None, # type: Optional[List[float]]
l1=0.0, # type: float
l2=0.0, # type: float
max_w2=3.4028235e+38, # type: float
initial_weight_distribution="uniform_adaptive", # type: Literal["uniform_adaptive", "uniform", "normal"]
initial_weight_scale=1.0, # type: float
initial_weights=None, # type: Optional[List[Union[None, str, H2OFrame]]]
initial_biases=None, # type: Optional[List[Union[None, str, H2OFrame]]]
loss="automatic", # type: Literal["automatic", "cross_entropy", "quadratic", "huber", "absolute", "quantile"]
distribution="auto", # type: Literal["auto", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber"]
quantile_alpha=0.5, # type: float
tweedie_power=1.5, # type: float
huber_alpha=0.9, # type: float
score_interval=5.0, # type: float
score_training_samples=10000, # type: int
score_validation_samples=0, # type: int
score_duty_cycle=0.1, # type: float
classification_stop=0.0, # type: float
regression_stop=1e-06, # type: float
stopping_rounds=5, # type: int
stopping_metric="auto", # type: Literal["auto", "deviance", "logloss", "mse", "rmse", "mae", "rmsle", "auc", "aucpr", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing"]
stopping_tolerance=0.0, # type: float
max_runtime_secs=0.0, # type: float
score_validation_sampling="uniform", # type: Literal["uniform", "stratified"]
diagnostics=True, # type: bool
fast_mode=True, # type: bool
force_load_balance=True, # type: bool
variable_importances=True, # type: bool
replicate_training_data=True, # type: bool
single_node_mode=False, # type: bool
shuffle_training_data=False, # type: bool
missing_values_handling="mean_imputation", # type: Literal["mean_imputation", "skip"]
quiet_mode=False, # type: bool
autoencoder=False, # type: bool
sparse=False, # type: bool
col_major=False, # type: bool
average_activation=0.0, # type: float
sparsity_beta=0.0, # type: float
max_categorical_features=2147483647, # type: int
reproducible=False, # type: bool
export_weights_and_biases=False, # type: bool
mini_batch_size=1, # type: int
categorical_encoding="auto", # type: Literal["auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder", "sort_by_response", "enum_limited"]
elastic_averaging=False, # type: bool
elastic_averaging_moving_rate=0.9, # type: float
elastic_averaging_regularization=0.001, # type: float
export_checkpoints_dir=None, # type: Optional[str]
auc_type="auto", # type: Literal["auto", "none", "macro_ovr", "weighted_ovr", "macro_ovo", "weighted_ovo"]
):
"""
:param model_id: Destination id for this model; auto-generated if not specified.
Defaults to ``None``.
:type model_id: Union[None, str, H2OEstimator], optional
:param training_frame: Id of the training data frame.
Defaults to ``None``.
:type training_frame: Union[None, str, H2OFrame], optional
:param validation_frame: Id of the validation data frame.
Defaults to ``None``.
:type validation_frame: Union[None, str, H2OFrame], optional
:param nfolds: Number of folds for K-fold cross-validation (0 to disable or >= 2).
Defaults to ``0``.
:type nfolds: int
:param keep_cross_validation_models: Whether to keep the cross-validation models.
Defaults to ``True``.
:type keep_cross_validation_models: bool
:param keep_cross_validation_predictions: Whether to keep the predictions of the cross-validation models.
Defaults to ``False``.
:type keep_cross_validation_predictions: bool
:param keep_cross_validation_fold_assignment: Whether to keep the cross-validation fold assignment.
Defaults to ``False``.
:type keep_cross_validation_fold_assignment: bool
:param fold_assignment: Cross-validation fold assignment scheme, if fold_column is not specified. The
'Stratified' option will stratify the folds based on the response variable, for classification problems.
Defaults to ``"auto"``.
:type fold_assignment: Literal["auto", "random", "modulo", "stratified"]
:param fold_column: Column with cross-validation fold index assignment per observation.
Defaults to ``None``.
:type fold_column: str, optional
:param response_column: Response variable column.
Defaults to ``None``.
:type response_column: str, optional
:param ignored_columns: Names of columns to ignore for training.
Defaults to ``None``.
:type ignored_columns: List[str], optional
:param ignore_const_cols: Ignore constant columns.
Defaults to ``True``.
:type ignore_const_cols: bool
:param score_each_iteration: Whether to score during each iteration of model training.
Defaults to ``False``.
:type score_each_iteration: bool
:param weights_column: Column with observation weights. Giving some observation a weight of zero is equivalent
to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating
that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do
not increase the size of the data frame. This is typically the number of times a row is repeated, but
non-integer values are supported as well. During training, rows with higher weights matter more, due to
the larger loss function pre-factor. If you set weight = 0 for a row, the returned prediction frame at
that row is zero and this is incorrect. To get an accurate prediction, remove all rows with weight == 0.
Defaults to ``None``.
:type weights_column: str, optional
:param offset_column: Offset column. This will be added to the combination of columns before applying the link
function.
Defaults to ``None``.
:type offset_column: str, optional
:param balance_classes: Balance training data class counts via over/under-sampling (for imbalanced data).
Defaults to ``False``.
:type balance_classes: bool
:param class_sampling_factors: Desired over/under-sampling ratios per class (in lexicographic order). If not
specified, sampling factors will be automatically computed to obtain class balance during training.
Requires balance_classes.
Defaults to ``None``.
:type class_sampling_factors: List[float], optional
:param max_after_balance_size: Maximum relative size of the training data after balancing class counts (can be
less than 1.0). Requires balance_classes.
Defaults to ``5.0``.
:type max_after_balance_size: float
:param max_confusion_matrix_size: [Deprecated] Maximum size (# classes) for confusion matrices to be printed in
the Logs.
Defaults to ``20``.
:type max_confusion_matrix_size: int
:param checkpoint: Model checkpoint to resume training with.
Defaults to ``None``.
:type checkpoint: Union[None, str, H2OEstimator], optional
:param pretrained_autoencoder: Pretrained autoencoder model to initialize this model with.
Defaults to ``None``.
:type pretrained_autoencoder: Union[None, str, H2OEstimator], optional
:param overwrite_with_best_model: If enabled, override the final model with the best model found during
training.
Defaults to ``True``.
:type overwrite_with_best_model: bool
:param use_all_factor_levels: Use all factor levels of categorical variables. Otherwise, the first factor level
is omitted (without loss of accuracy). Useful for variable importances and auto-enabled for autoencoder.
Defaults to ``True``.
:type use_all_factor_levels: bool
:param standardize: If enabled, automatically standardize the data. If disabled, the user must provide properly
scaled input data.
Defaults to ``True``.
:type standardize: bool
:param activation: Activation function.
Defaults to ``"rectifier"``.
:type activation: Literal["tanh", "tanh_with_dropout", "rectifier", "rectifier_with_dropout", "maxout",
"maxout_with_dropout"]
:param hidden: Hidden layer sizes (e.g. [100, 100]).
Defaults to ``[200, 200]``.
:type hidden: List[int]
:param epochs: How many times the dataset should be iterated (streamed), can be fractional.
Defaults to ``10.0``.
:type epochs: float
:param train_samples_per_iteration: Number of training samples (globally) per MapReduce iteration. Special
values are 0: one epoch, -1: all available data (e.g., replicated training data), -2: automatic.
Defaults to ``-2``.
:type train_samples_per_iteration: int
:param target_ratio_comm_to_comp: Target ratio of communication overhead to computation. Only for multi-node
operation and train_samples_per_iteration = -2 (auto-tuning).
Defaults to ``0.05``.
:type target_ratio_comm_to_comp: float
:param seed: Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded.
Defaults to ``-1``.
:type seed: int
:param adaptive_rate: Adaptive learning rate.
Defaults to ``True``.
:type adaptive_rate: bool
:param rho: Adaptive learning rate time decay factor (similarity to prior updates).
Defaults to ``0.99``.
:type rho: float
:param epsilon: Adaptive learning rate smoothing factor (to avoid divisions by zero and allow progress).
Defaults to ``1e-08``.
:type epsilon: float
:param rate: Learning rate (higher => less stable, lower => slower convergence).
Defaults to ``0.005``.
:type rate: float
:param rate_annealing: Learning rate annealing: rate / (1 + rate_annealing * samples).
Defaults to ``1e-06``.
:type rate_annealing: float
:param rate_decay: Learning rate decay factor between layers (N-th layer: rate * rate_decay ^ (n - 1).
Defaults to ``1.0``.
:type rate_decay: float
:param momentum_start: Initial momentum at the beginning of training (try 0.5).
Defaults to ``0.0``.
:type momentum_start: float
:param momentum_ramp: Number of training samples for which momentum increases.
Defaults to ``1000000.0``.
:type momentum_ramp: float
:param momentum_stable: Final momentum after the ramp is over (try 0.99).
Defaults to ``0.0``.
:type momentum_stable: float
:param nesterov_accelerated_gradient: Use Nesterov accelerated gradient (recommended).
Defaults to ``True``.
:type nesterov_accelerated_gradient: bool
:param input_dropout_ratio: Input layer dropout ratio (can improve generalization, try 0.1 or 0.2).
Defaults to ``0.0``.
:type input_dropout_ratio: float
:param hidden_dropout_ratios: Hidden layer dropout ratios (can improve generalization), specify one value per
hidden layer, defaults to 0.5.
Defaults to ``None``.
:type hidden_dropout_ratios: List[float], optional
:param l1: L1 regularization (can add stability and improve generalization, causes many weights to become 0).
Defaults to ``0.0``.
:type l1: float
:param l2: L2 regularization (can add stability and improve generalization, causes many weights to be small.
Defaults to ``0.0``.
:type l2: float
:param max_w2: Constraint for squared sum of incoming weights per unit (e.g. for Rectifier).
Defaults to ``3.4028235e+38``.
:type max_w2: float
:param initial_weight_distribution: Initial weight distribution.
Defaults to ``"uniform_adaptive"``.
:type initial_weight_distribution: Literal["uniform_adaptive", "uniform", "normal"]
:param initial_weight_scale: Uniform: -value...value, Normal: stddev.
Defaults to ``1.0``.
:type initial_weight_scale: float
:param initial_weights: A list of H2OFrame ids to initialize the weight matrices of this model with.
Defaults to ``None``.
:type initial_weights: List[Union[None, str, H2OFrame]], optional
:param initial_biases: A list of H2OFrame ids to initialize the bias vectors of this model with.
Defaults to ``None``.
:type initial_biases: List[Union[None, str, H2OFrame]], optional
:param loss: Loss function.
Defaults to ``"automatic"``.
:type loss: Literal["automatic", "cross_entropy", "quadratic", "huber", "absolute", "quantile"]
:param distribution: Distribution function
Defaults to ``"auto"``.
:type distribution: Literal["auto", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace",
"quantile", "huber"]
:param quantile_alpha: Desired quantile for Quantile regression, must be between 0 and 1.
Defaults to ``0.5``.
:type quantile_alpha: float
:param tweedie_power: Tweedie power for Tweedie regression, must be between 1 and 2.
Defaults to ``1.5``.
:type tweedie_power: float
:param huber_alpha: Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must
be between 0 and 1).
Defaults to ``0.9``.
:type huber_alpha: float
:param score_interval: Shortest time interval (in seconds) between model scoring.
Defaults to ``5.0``.
:type score_interval: float
:param score_training_samples: Number of training set samples for scoring (0 for all).
Defaults to ``10000``.
:type score_training_samples: int
:param score_validation_samples: Number of validation set samples for scoring (0 for all).
Defaults to ``0``.
:type score_validation_samples: int
:param score_duty_cycle: Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring).
Defaults to ``0.1``.
:type score_duty_cycle: float
:param classification_stop: Stopping criterion for classification error fraction on training data (-1 to
disable).
Defaults to ``0.0``.
:type classification_stop: float
:param regression_stop: Stopping criterion for regression error (MSE) on training data (-1 to disable).
Defaults to ``1e-06``.
:type regression_stop: float
:param stopping_rounds: Early stopping based on convergence of stopping_metric. Stop if simple moving average of
length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable)
Defaults to ``5``.
:type stopping_rounds: int
:param stopping_metric: Metric to use for early stopping (AUTO: logloss for classification, deviance for
regression and anonomaly_score for Isolation Forest). Note that custom and custom_increasing can only be
used in GBM and DRF with the Python client.
Defaults to ``"auto"``.
:type stopping_metric: Literal["auto", "deviance", "logloss", "mse", "rmse", "mae", "rmsle", "auc", "aucpr", "lift_top_group",
"misclassification", "mean_per_class_error", "custom", "custom_increasing"]
:param stopping_tolerance: Relative tolerance for metric-based stopping criterion (stop if relative improvement
is not at least this much)
Defaults to ``0.0``.
:type stopping_tolerance: float
:param max_runtime_secs: Maximum allowed runtime in seconds for model training. Use 0 to disable.
Defaults to ``0.0``.
:type max_runtime_secs: float
:param score_validation_sampling: Method used to sample validation dataset for scoring.
Defaults to ``"uniform"``.
:type score_validation_sampling: Literal["uniform", "stratified"]
:param diagnostics: Enable diagnostics for hidden layers.
Defaults to ``True``.
:type diagnostics: bool
:param fast_mode: Enable fast mode (minor approximation in back-propagation).
Defaults to ``True``.
:type fast_mode: bool
:param force_load_balance: Force extra load balancing to increase training speed for small datasets (to keep all
cores busy).
Defaults to ``True``.
:type force_load_balance: bool
:param variable_importances: Compute variable importances for input features (Gedeon method) - can be slow for
large networks.
Defaults to ``True``.
:type variable_importances: bool
:param replicate_training_data: Replicate the entire training dataset onto every node for faster training on
small datasets.
Defaults to ``True``.
:type replicate_training_data: bool
:param single_node_mode: Run on a single node for fine-tuning of model parameters.
Defaults to ``False``.
:type single_node_mode: bool
:param shuffle_training_data: Enable shuffling of training data (recommended if training data is replicated and
train_samples_per_iteration is close to #nodes x #rows, of if using balance_classes).
Defaults to ``False``.
:type shuffle_training_data: bool
:param missing_values_handling: Handling of missing values. Either MeanImputation or Skip.
Defaults to ``"mean_imputation"``.
:type missing_values_handling: Literal["mean_imputation", "skip"]
:param quiet_mode: Enable quiet mode for less output to standard output.
Defaults to ``False``.
:type quiet_mode: bool
:param autoencoder: Auto-Encoder.
Defaults to ``False``.
:type autoencoder: bool
:param sparse: Sparse data handling (more efficient for data with lots of 0 values).
Defaults to ``False``.
:type sparse: bool
:param col_major: #DEPRECATED Use a column major weight matrix for input layer. Can speed up forward
propagation, but might slow down backpropagation.
Defaults to ``False``.
:type col_major: bool
:param average_activation: Average activation for sparse auto-encoder. #Experimental
Defaults to ``0.0``.
:type average_activation: float
:param sparsity_beta: Sparsity regularization. #Experimental
Defaults to ``0.0``.
:type sparsity_beta: float
:param max_categorical_features: Max. number of categorical features, enforced via hashing. #Experimental
Defaults to ``2147483647``.
:type max_categorical_features: int
:param reproducible: Force reproducibility on small data (will be slow - only uses 1 thread).
Defaults to ``False``.
:type reproducible: bool
:param export_weights_and_biases: Whether to export Neural Network weights and biases to H2O Frames.
Defaults to ``False``.
:type export_weights_and_biases: bool
:param mini_batch_size: Mini-batch size (smaller leads to better fit, larger can speed up and generalize
better).
Defaults to ``1``.
:type mini_batch_size: int
:param categorical_encoding: Encoding scheme for categorical features
Defaults to ``"auto"``.
:type categorical_encoding: Literal["auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder",
"sort_by_response", "enum_limited"]
:param elastic_averaging: Elastic averaging between compute nodes can improve distributed model convergence.
#Experimental
Defaults to ``False``.
:type elastic_averaging: bool
:param elastic_averaging_moving_rate: Elastic averaging moving rate (only if elastic averaging is enabled).
Defaults to ``0.9``.
:type elastic_averaging_moving_rate: float
:param elastic_averaging_regularization: Elastic averaging regularization strength (only if elastic averaging is
enabled).
Defaults to ``0.001``.
:type elastic_averaging_regularization: float
:param export_checkpoints_dir: Automatically export generated models to this directory.
Defaults to ``None``.
:type export_checkpoints_dir: str, optional
:param auc_type: Set default multinomial AUC type.
Defaults to ``"auto"``.
:type auc_type: Literal["auto", "none", "macro_ovr", "weighted_ovr", "macro_ovo", "weighted_ovo"]
"""
super(H2ODeepLearningEstimator, self).__init__()
self._parms = {}
self._id = self._parms['model_id'] = model_id
self.training_frame = training_frame
self.validation_frame = validation_frame
self.nfolds = nfolds
self.keep_cross_validation_models = keep_cross_validation_models
self.keep_cross_validation_predictions = keep_cross_validation_predictions
self.keep_cross_validation_fold_assignment = keep_cross_validation_fold_assignment
self.fold_assignment = fold_assignment
self.fold_column = fold_column
self.response_column = response_column
self.ignored_columns = ignored_columns
self.ignore_const_cols = ignore_const_cols
self.score_each_iteration = score_each_iteration
self.weights_column = weights_column
self.offset_column = offset_column
self.balance_classes = balance_classes
self.class_sampling_factors = class_sampling_factors
self.max_after_balance_size = max_after_balance_size
self.max_confusion_matrix_size = max_confusion_matrix_size
self.checkpoint = checkpoint
self.pretrained_autoencoder = pretrained_autoencoder
self.overwrite_with_best_model = overwrite_with_best_model
self.use_all_factor_levels = use_all_factor_levels
self.standardize = standardize
self.activation = activation
self.hidden = hidden
self.epochs = epochs
self.train_samples_per_iteration = train_samples_per_iteration
self.target_ratio_comm_to_comp = target_ratio_comm_to_comp
self.seed = seed
self.adaptive_rate = adaptive_rate
self.rho = rho
self.epsilon = epsilon
self.rate = rate
self.rate_annealing = rate_annealing
self.rate_decay = rate_decay
self.momentum_start = momentum_start
self.momentum_ramp = momentum_ramp
self.momentum_stable = momentum_stable
self.nesterov_accelerated_gradient = nesterov_accelerated_gradient
self.input_dropout_ratio = input_dropout_ratio
self.hidden_dropout_ratios = hidden_dropout_ratios
self.l1 = l1
self.l2 = l2
self.max_w2 = max_w2
self.initial_weight_distribution = initial_weight_distribution
self.initial_weight_scale = initial_weight_scale
self.initial_weights = initial_weights
self.initial_biases = initial_biases
self.loss = loss
self.distribution = distribution
self.quantile_alpha = quantile_alpha
self.tweedie_power = tweedie_power
self.huber_alpha = huber_alpha
self.score_interval = score_interval
self.score_training_samples = score_training_samples
self.score_validation_samples = score_validation_samples
self.score_duty_cycle = score_duty_cycle
self.classification_stop = classification_stop
self.regression_stop = regression_stop
self.stopping_rounds = stopping_rounds
self.stopping_metric = stopping_metric
self.stopping_tolerance = stopping_tolerance
self.max_runtime_secs = max_runtime_secs
self.score_validation_sampling = score_validation_sampling
self.diagnostics = diagnostics
self.fast_mode = fast_mode
self.force_load_balance = force_load_balance
self.variable_importances = variable_importances
self.replicate_training_data = replicate_training_data
self.single_node_mode = single_node_mode
self.shuffle_training_data = shuffle_training_data
self.missing_values_handling = missing_values_handling
self.quiet_mode = quiet_mode
self.autoencoder = autoencoder
self.sparse = sparse
self.col_major = col_major
self.average_activation = average_activation
self.sparsity_beta = sparsity_beta
self.max_categorical_features = max_categorical_features
self.reproducible = reproducible
self.export_weights_and_biases = export_weights_and_biases
self.mini_batch_size = mini_batch_size
self.categorical_encoding = categorical_encoding
self.elastic_averaging = elastic_averaging
self.elastic_averaging_moving_rate = elastic_averaging_moving_rate
self.elastic_averaging_regularization = elastic_averaging_regularization
self.export_checkpoints_dir = export_checkpoints_dir
self.auc_type = auc_type
@property
def training_frame(self):
"""
Id of the training data frame.
Type: ``Union[None, str, H2OFrame]``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator()
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("training_frame")
@training_frame.setter
def training_frame(self, training_frame):
self._parms["training_frame"] = H2OFrame._validate(training_frame, 'training_frame')
@property
def validation_frame(self):
"""
Id of the validation data frame.
Type: ``Union[None, str, H2OFrame]``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(standardize=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("validation_frame")
@validation_frame.setter
def validation_frame(self, validation_frame):
self._parms["validation_frame"] = H2OFrame._validate(validation_frame, 'validation_frame')
@property
def nfolds(self):
"""
Number of folds for K-fold cross-validation (0 to disable or >= 2).
Type: ``int``, defaults to ``0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(nfolds=5, seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("nfolds")
@nfolds.setter
def nfolds(self, nfolds):
assert_is_type(nfolds, None, int)
self._parms["nfolds"] = nfolds
@property
def keep_cross_validation_models(self):
"""
Whether to keep the cross-validation models.
Type: ``bool``, defaults to ``True``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(keep_cross_validation_models=True,
... nfolds=5,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> print(cars_dl.cross_validation_models())
"""
return self._parms.get("keep_cross_validation_models")
@keep_cross_validation_models.setter
def keep_cross_validation_models(self, keep_cross_validation_models):
assert_is_type(keep_cross_validation_models, None, bool)
self._parms["keep_cross_validation_models"] = keep_cross_validation_models
@property
def keep_cross_validation_predictions(self):
"""
Whether to keep the predictions of the cross-validation models.
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(keep_cross_validation_predictions=True,
... nfolds=5,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> print(cars_dl.cross_validation_predictions())
"""
return self._parms.get("keep_cross_validation_predictions")
@keep_cross_validation_predictions.setter
def keep_cross_validation_predictions(self, keep_cross_validation_predictions):
assert_is_type(keep_cross_validation_predictions, None, bool)
self._parms["keep_cross_validation_predictions"] = keep_cross_validation_predictions
@property
def keep_cross_validation_fold_assignment(self):
"""
Whether to keep the cross-validation fold assignment.
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(keep_cross_validation_fold_assignment=True,
... nfolds=5,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> print(cars_dl.cross_validation_fold_assignment())
"""
return self._parms.get("keep_cross_validation_fold_assignment")
@keep_cross_validation_fold_assignment.setter
def keep_cross_validation_fold_assignment(self, keep_cross_validation_fold_assignment):
assert_is_type(keep_cross_validation_fold_assignment, None, bool)
self._parms["keep_cross_validation_fold_assignment"] = keep_cross_validation_fold_assignment
@property
def fold_assignment(self):
"""
Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify
the folds based on the response variable, for classification problems.
Type: ``Literal["auto", "random", "modulo", "stratified"]``, defaults to ``"auto"``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(fold_assignment="Random",
... nfolds=5,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("fold_assignment")
@fold_assignment.setter
def fold_assignment(self, fold_assignment):
assert_is_type(fold_assignment, None, Enum("auto", "random", "modulo", "stratified"))
self._parms["fold_assignment"] = fold_assignment
@property
def fold_column(self):
"""
Column with cross-validation fold index assignment per observation.
Type: ``str``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> fold_numbers = cars.kfold_column(n_folds=5, seed=1234)
>>> fold_numbers.set_names(["fold_numbers"])
>>> cars = cars.cbind(fold_numbers)
>>> print(cars['fold_numbers'])
>>> cars_dl = H2ODeepLearningEstimator(seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars,
... fold_column="fold_numbers")
>>> cars_dl.mse()
"""
return self._parms.get("fold_column")
@fold_column.setter
def fold_column(self, fold_column):
assert_is_type(fold_column, None, str)
self._parms["fold_column"] = fold_column
@property
def response_column(self):
"""
Response variable column.
Type: ``str``.
"""
return self._parms.get("response_column")
@response_column.setter
def response_column(self, response_column):
assert_is_type(response_column, None, str)
self._parms["response_column"] = response_column
@property
def ignored_columns(self):
"""
Names of columns to ignore for training.
Type: ``List[str]``.
"""
return self._parms.get("ignored_columns")
@ignored_columns.setter
def ignored_columns(self, ignored_columns):
assert_is_type(ignored_columns, None, [str])
self._parms["ignored_columns"] = ignored_columns
@property
def ignore_const_cols(self):
"""
Ignore constant columns.
Type: ``bool``, defaults to ``True``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars["const_1"] = 6
>>> cars["const_2"] = 7
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(seed=1234,
... ignore_const_cols=True)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("ignore_const_cols")
@ignore_const_cols.setter
def ignore_const_cols(self, ignore_const_cols):
assert_is_type(ignore_const_cols, None, bool)
self._parms["ignore_const_cols"] = ignore_const_cols
@property
def score_each_iteration(self):
"""
Whether to score during each iteration of model training.
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(score_each_iteration=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("score_each_iteration")
@score_each_iteration.setter
def score_each_iteration(self, score_each_iteration):
assert_is_type(score_each_iteration, None, bool)
self._parms["score_each_iteration"] = score_each_iteration
@property
def weights_column(self):
"""
Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the
dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative
weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data
frame. This is typically the number of times a row is repeated, but non-integer values are supported as well.
During training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set
weight = 0 for a row, the returned prediction frame at that row is zero and this is incorrect. To get an
accurate prediction, remove all rows with weight == 0.
Type: ``str``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("weights_column")
@weights_column.setter
def weights_column(self, weights_column):
assert_is_type(weights_column, None, str)
self._parms["weights_column"] = weights_column
@property
def offset_column(self):
"""
Offset column. This will be added to the combination of columns before applying the link function.
Type: ``str``.
:examples:
>>> boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")
>>> predictors = boston.columns[:-1]
>>> response = "medv"
>>> boston['chas'] = boston['chas'].asfactor()
>>> boston["offset"] = boston["medv"].log()
>>> train, valid = boston.split_frame(ratios=[.8], seed=1234)
>>> boston_dl = H2ODeepLearningEstimator(offset_column="offset",
... seed=1234)
>>> boston_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> boston_dl.mse()
"""
return self._parms.get("offset_column")
@offset_column.setter
def offset_column(self, offset_column):
assert_is_type(offset_column, None, str)
self._parms["offset_column"] = offset_column
@property
def balance_classes(self):
"""
Balance training data class counts via over/under-sampling (for imbalanced data).
Type: ``bool``, defaults to ``False``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> cov_dl = H2ODeepLearningEstimator(balance_classes=True,
... seed=1234)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.mse()
"""
return self._parms.get("balance_classes")
@balance_classes.setter
def balance_classes(self, balance_classes):
assert_is_type(balance_classes, None, bool)
self._parms["balance_classes"] = balance_classes
@property
def class_sampling_factors(self):
"""
Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will
be automatically computed to obtain class balance during training. Requires balance_classes.
Type: ``List[float]``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> sample_factors = [1., 0.5, 1., 1., 1., 1., 1.]
>>> cars_dl = H2ODeepLearningEstimator(balance_classes=True,
... class_sampling_factors=sample_factors,
... seed=1234)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.mse()
"""
return self._parms.get("class_sampling_factors")
@class_sampling_factors.setter
def class_sampling_factors(self, class_sampling_factors):
assert_is_type(class_sampling_factors, None, [float])
self._parms["class_sampling_factors"] = class_sampling_factors
@property
def max_after_balance_size(self):
"""
Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires
balance_classes.
Type: ``float``, defaults to ``5.0``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> max = .85
>>> cov_dl = H2ODeepLearningEstimator(balance_classes=True,
... max_after_balance_size=max,
... seed=1234)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.logloss()
"""
return self._parms.get("max_after_balance_size")
@max_after_balance_size.setter
def max_after_balance_size(self, max_after_balance_size):
assert_is_type(max_after_balance_size, None, float)
self._parms["max_after_balance_size"] = max_after_balance_size
@property
def max_confusion_matrix_size(self):
"""
[Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs.
Type: ``int``, defaults to ``20``.
"""
return self._parms.get("max_confusion_matrix_size")
@max_confusion_matrix_size.setter
def max_confusion_matrix_size(self, max_confusion_matrix_size):
assert_is_type(max_confusion_matrix_size, None, int)
self._parms["max_confusion_matrix_size"] = max_confusion_matrix_size
@property
def checkpoint(self):
"""
Model checkpoint to resume training with.
Type: ``Union[None, str, H2OEstimator]``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(activation="tanh",
... autoencoder=True,
... seed=1234,
... model_id="cars_dl")
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
>>> cars_cont = H2ODeepLearningEstimator(checkpoint=cars_dl,
... seed=1234)
>>> cars_cont.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_cont.mse()
"""
return self._parms.get("checkpoint")
@checkpoint.setter
def checkpoint(self, checkpoint):
assert_is_type(checkpoint, None, str, H2OEstimator)
self._parms["checkpoint"] = checkpoint
@property
def pretrained_autoencoder(self):
"""
Pretrained autoencoder model to initialize this model with.
Type: ``Union[None, str, H2OEstimator]``.
:examples:
>>> from h2o.estimators.deeplearning import H2OAutoEncoderEstimator
>>> resp = 784
>>> nfeatures = 20
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> train[resp] = train[resp].asfactor()
>>> test[resp] = test[resp].asfactor()
>>> sid = train[0].runif(0)
>>> train_unsupervised = train[sid>=0.5]
>>> train_unsupervised.pop(resp)
>>> train_supervised = train[sid<0.5]
>>> ae_model = H2OAutoEncoderEstimator(activation="Tanh",
... hidden=[nfeatures],
... model_id="ae_model",
... epochs=1,
... ignore_const_cols=False,
... reproducible=True,
... seed=1234)
>>> ae_model.train(list(range(resp)), training_frame=train_unsupervised)
>>> ae_model.mse()
>>> pretrained_model = H2ODeepLearningEstimator(activation="Tanh",
... hidden=[nfeatures],
... epochs=1,
... reproducible = True,
... seed=1234,
... ignore_const_cols=False,
... pretrained_autoencoder="ae_model")
>>> pretrained_model.train(list(range(resp)), resp,
... training_frame=train_supervised,
... validation_frame=test)
>>> pretrained_model.mse()
"""
return self._parms.get("pretrained_autoencoder")
@pretrained_autoencoder.setter
def pretrained_autoencoder(self, pretrained_autoencoder):
assert_is_type(pretrained_autoencoder, None, str, H2OEstimator)
self._parms["pretrained_autoencoder"] = pretrained_autoencoder
@property
def overwrite_with_best_model(self):
"""
If enabled, override the final model with the best model found during training.
Type: ``bool``, defaults to ``True``.
:examples:
>>> boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")
>>> predictors = boston.columns[:-1]
>>> response = "medv"
>>> boston['chas'] = boston['chas'].asfactor()
>>> boston["offset"] = boston["medv"].log()
>>> train, valid = boston.split_frame(ratios=[.8], seed=1234)
>>> boston_dl = H2ODeepLearningEstimator(overwrite_with_best_model=True,
... seed=1234)
>>> boston_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> boston_dl.mse()
"""
return self._parms.get("overwrite_with_best_model")
@overwrite_with_best_model.setter
def overwrite_with_best_model(self, overwrite_with_best_model):
assert_is_type(overwrite_with_best_model, None, bool)
self._parms["overwrite_with_best_model"] = overwrite_with_best_model
@property
def use_all_factor_levels(self):
"""
Use all factor levels of categorical variables. Otherwise, the first factor level is omitted (without loss of
accuracy). Useful for variable importances and auto-enabled for autoencoder.
Type: ``bool``, defaults to ``True``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(use_all_factor_levels=True,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.mse()
"""
return self._parms.get("use_all_factor_levels")
@use_all_factor_levels.setter
def use_all_factor_levels(self, use_all_factor_levels):
assert_is_type(use_all_factor_levels, None, bool)
self._parms["use_all_factor_levels"] = use_all_factor_levels
@property
def standardize(self):
"""
If enabled, automatically standardize the data. If disabled, the user must provide properly scaled input data.
Type: ``bool``, defaults to ``True``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(standardize=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("standardize")
@standardize.setter
def standardize(self, standardize):
assert_is_type(standardize, None, bool)
self._parms["standardize"] = standardize
@property
def activation(self):
"""
Activation function.
Type: ``Literal["tanh", "tanh_with_dropout", "rectifier", "rectifier_with_dropout", "maxout",
"maxout_with_dropout"]``, defaults to ``"rectifier"``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> cars_dl = H2ODeepLearningEstimator(activation="tanh")
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("activation")
@activation.setter
def activation(self, activation):
assert_is_type(activation, None, Enum("tanh", "tanh_with_dropout", "rectifier", "rectifier_with_dropout", "maxout", "maxout_with_dropout"))
self._parms["activation"] = activation
@property
def hidden(self):
"""
Hidden layer sizes (e.g. [100, 100]).
Type: ``List[int]``, defaults to ``[200, 200]``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(hidden=[100,100],
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("hidden")
@hidden.setter
def hidden(self, hidden):
assert_is_type(hidden, None, [int])
self._parms["hidden"] = hidden
@property
def epochs(self):
"""
How many times the dataset should be iterated (streamed), can be fractional.
Type: ``float``, defaults to ``10.0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(epochs=15,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("epochs")
@epochs.setter
def epochs(self, epochs):
assert_is_type(epochs, None, numeric)
self._parms["epochs"] = epochs
@property
def train_samples_per_iteration(self):
"""
Number of training samples (globally) per MapReduce iteration. Special values are 0: one epoch, -1: all
available data (e.g., replicated training data), -2: automatic.
Type: ``int``, defaults to ``-2``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(train_samples_per_iteration=-1,
... epochs=1,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("train_samples_per_iteration")
@train_samples_per_iteration.setter
def train_samples_per_iteration(self, train_samples_per_iteration):
assert_is_type(train_samples_per_iteration, None, int)
self._parms["train_samples_per_iteration"] = train_samples_per_iteration
@property
def target_ratio_comm_to_comp(self):
"""
Target ratio of communication overhead to computation. Only for multi-node operation and
train_samples_per_iteration = -2 (auto-tuning).
Type: ``float``, defaults to ``0.05``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(target_ratio_comm_to_comp=0.05,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("target_ratio_comm_to_comp")
@target_ratio_comm_to_comp.setter
def target_ratio_comm_to_comp(self, target_ratio_comm_to_comp):
assert_is_type(target_ratio_comm_to_comp, None, numeric)
self._parms["target_ratio_comm_to_comp"] = target_ratio_comm_to_comp
@property
def seed(self):
"""
Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded.
Type: ``int``, defaults to ``-1``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("seed")
@seed.setter
def seed(self, seed):
assert_is_type(seed, None, int)
self._parms["seed"] = seed
@property
def adaptive_rate(self):
"""
Adaptive learning rate.
Type: ``bool``, defaults to ``True``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> cars_dl = H2ODeepLearningEstimator(adaptive_rate=True)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("adaptive_rate")
@adaptive_rate.setter
def adaptive_rate(self, adaptive_rate):
assert_is_type(adaptive_rate, None, bool)
self._parms["adaptive_rate"] = adaptive_rate
@property
def rho(self):
"""
Adaptive learning rate time decay factor (similarity to prior updates).
Type: ``float``, defaults to ``0.99``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(rho=0.9,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("rho")
@rho.setter
def rho(self, rho):
assert_is_type(rho, None, numeric)
self._parms["rho"] = rho
@property
def epsilon(self):
"""
Adaptive learning rate smoothing factor (to avoid divisions by zero and allow progress).
Type: ``float``, defaults to ``1e-08``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(epsilon=1e-6,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("epsilon")
@epsilon.setter
def epsilon(self, epsilon):
assert_is_type(epsilon, None, numeric)
self._parms["epsilon"] = epsilon
@property
def rate(self):
"""
Learning rate (higher => less stable, lower => slower convergence).
Type: ``float``, defaults to ``0.005``.
:examples:
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> predictors = list(range(0,784))
>>> resp = 784
>>> train[resp] = train[resp].asfactor()
>>> test[resp] = test[resp].asfactor()
>>> nclasses = train[resp].nlevels()[0]
>>> model = H2ODeepLearningEstimator(activation="RectifierWithDropout",
... adaptive_rate=False,
... rate=0.01,
... rate_decay=0.9,
... rate_annealing=1e-6,
... momentum_start=0.95,
... momentum_ramp=1e5,
... momentum_stable=0.99,
... nesterov_accelerated_gradient=False,
... input_dropout_ratio=0.2,
... train_samples_per_iteration=20000,
... classification_stop=-1,
... l1=1e-5)
>>> model.train (x=predictors,y=resp, training_frame=train, validation_frame=test)
>>> model.model_performance(valid=True)
"""
return self._parms.get("rate")
@rate.setter
def rate(self, rate):
assert_is_type(rate, None, numeric)
self._parms["rate"] = rate
@property
def rate_annealing(self):
"""
Learning rate annealing: rate / (1 + rate_annealing * samples).
Type: ``float``, defaults to ``1e-06``.
:examples:
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> predictors = list(range(0,784))
>>> resp = 784
>>> train[resp] = train[resp].asfactor()
>>> test[resp] = test[resp].asfactor()
>>> nclasses = train[resp].nlevels()[0]
>>> model = H2ODeepLearningEstimator(activation="RectifierWithDropout",
... adaptive_rate=False,
... rate=0.01,
... rate_decay=0.9,
... rate_annealing=1e-6,
... momentum_start=0.95,
... momentum_ramp=1e5,
... momentum_stable=0.99,
... nesterov_accelerated_gradient=False,
... input_dropout_ratio=0.2,
... train_samples_per_iteration=20000,
... classification_stop=-1,
... l1=1e-5)
>>> model.train (x=predictors,
... y=resp,
... training_frame=train,
... validation_frame=test)
>>> model.mse()
"""
return self._parms.get("rate_annealing")
@rate_annealing.setter
def rate_annealing(self, rate_annealing):
assert_is_type(rate_annealing, None, numeric)
self._parms["rate_annealing"] = rate_annealing
@property
def rate_decay(self):
"""
Learning rate decay factor between layers (N-th layer: rate * rate_decay ^ (n - 1).
Type: ``float``, defaults to ``1.0``.
:examples:
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> predictors = list(range(0,784))
>>> resp = 784
>>> train[resp] = train[resp].asfactor()
>>> test[resp] = test[resp].asfactor()
>>> nclasses = train[resp].nlevels()[0]
>>> model = H2ODeepLearningEstimator(activation="RectifierWithDropout",
... adaptive_rate=False,
... rate=0.01,
... rate_decay=0.9,
... rate_annealing=1e-6,
... momentum_start=0.95,
... momentum_ramp=1e5,
... momentum_stable=0.99,
... nesterov_accelerated_gradient=False,
... input_dropout_ratio=0.2,
... train_samples_per_iteration=20000,
... classification_stop=-1,
... l1=1e-5)
>>> model.train (x=predictors,
... y=resp,
... training_frame=train,
... validation_frame=test)
>>> model.model_performance()
"""
return self._parms.get("rate_decay")
@rate_decay.setter
def rate_decay(self, rate_decay):
assert_is_type(rate_decay, None, numeric)
self._parms["rate_decay"] = rate_decay
@property
def momentum_start(self):
"""
Initial momentum at the beginning of training (try 0.5).
Type: ``float``, defaults to ``0.0``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> predictors = ["Year","Month","DayofMonth","DayOfWeek","CRSDepTime",
... "CRSArrTime","UniqueCarrier","FlightNum"]
>>> response_col = "IsDepDelayed"
>>> airlines_dl = H2ODeepLearningEstimator(hidden=[200,200],
... activation="Rectifier",
... input_dropout_ratio=0.0,
... momentum_start=0.9,
... momentum_stable=0.99,
... momentum_ramp=1e7,
... epochs=100,
... stopping_rounds=4,
... train_samples_per_iteration=30000,
... mini_batch_size=32,
... score_duty_cycle=0.25,
... score_interval=1)
>>> airlines_dl.train(x=predictors,
... y=response_col,
... training_frame=airlines)
>>> airlines_dl.mse()
"""
return self._parms.get("momentum_start")
@momentum_start.setter
def momentum_start(self, momentum_start):
assert_is_type(momentum_start, None, numeric)
self._parms["momentum_start"] = momentum_start
@property
def momentum_ramp(self):
"""
Number of training samples for which momentum increases.
Type: ``float``, defaults to ``1000000.0``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> predictors = ["Year","Month","DayofMonth","DayOfWeek","CRSDepTime",
... "CRSArrTime","UniqueCarrier","FlightNum"]
>>> response_col = "IsDepDelayed"
>>> airlines_dl = H2ODeepLearningEstimator(hidden=[200,200],
... activation="Rectifier",
... input_dropout_ratio=0.0,
... momentum_start=0.9,
... momentum_stable=0.99,
... momentum_ramp=1e7,
... epochs=100,
... stopping_rounds=4,
... train_samples_per_iteration=30000,
... mini_batch_size=32,
... score_duty_cycle=0.25,
... score_interval=1)
>>> airlines_dl.train(x=predictors,
... y=response_col,
... training_frame=airlines)
>>> airlines_dl.mse()
"""
return self._parms.get("momentum_ramp")
@momentum_ramp.setter
def momentum_ramp(self, momentum_ramp):
assert_is_type(momentum_ramp, None, numeric)
self._parms["momentum_ramp"] = momentum_ramp
@property
def momentum_stable(self):
"""
Final momentum after the ramp is over (try 0.99).
Type: ``float``, defaults to ``0.0``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> predictors = ["Year","Month","DayofMonth","DayOfWeek","CRSDepTime",
... "CRSArrTime","UniqueCarrier","FlightNum"]
>>> response_col = "IsDepDelayed"
>>> airlines_dl = H2ODeepLearningEstimator(hidden=[200,200],
... activation="Rectifier",
... input_dropout_ratio=0.0,
... momentum_start=0.9,
... momentum_stable=0.99,
... momentum_ramp=1e7,
... epochs=100,
... stopping_rounds=4,
... train_samples_per_iteration=30000,
... mini_batch_size=32,
... score_duty_cycle=0.25,
... score_interval=1)
>>> airlines_dl.train(x=predictors,
... y=response_col,
... training_frame=airlines)
>>> airlines_dl.mse()
"""
return self._parms.get("momentum_stable")
@momentum_stable.setter
def momentum_stable(self, momentum_stable):
assert_is_type(momentum_stable, None, numeric)
self._parms["momentum_stable"] = momentum_stable
@property
def nesterov_accelerated_gradient(self):
"""
Use Nesterov accelerated gradient (recommended).
Type: ``bool``, defaults to ``True``.
:examples:
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> predictors = list(range(0,784))
>>> resp = 784
>>> train[resp] = train[resp].asfactor()
>>> test[resp] = test[resp].asfactor()
>>> nclasses = train[resp].nlevels()[0]
>>> model = H2ODeepLearningEstimator(activation="RectifierWithDropout",
... adaptive_rate=False,
... rate=0.01,
... rate_decay=0.9,
... rate_annealing=1e-6,
... momentum_start=0.95,
... momentum_ramp=1e5,
... momentum_stable=0.99,
... nesterov_accelerated_gradient=False,
... input_dropout_ratio=0.2,
... train_samples_per_iteration=20000,
... classification_stop=-1,
... l1=1e-5)
>>> model.train (x=predictors,
... y=resp,
... training_frame=train,
... validation_frame=test)
>>> model.model_performance()
"""
return self._parms.get("nesterov_accelerated_gradient")
@nesterov_accelerated_gradient.setter
def nesterov_accelerated_gradient(self, nesterov_accelerated_gradient):
assert_is_type(nesterov_accelerated_gradient, None, bool)
self._parms["nesterov_accelerated_gradient"] = nesterov_accelerated_gradient
@property
def input_dropout_ratio(self):
"""
Input layer dropout ratio (can improve generalization, try 0.1 or 0.2).
Type: ``float``, defaults to ``0.0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(input_dropout_ratio=0.2,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("input_dropout_ratio")
@input_dropout_ratio.setter
def input_dropout_ratio(self, input_dropout_ratio):
assert_is_type(input_dropout_ratio, None, numeric)
self._parms["input_dropout_ratio"] = input_dropout_ratio
@property
def hidden_dropout_ratios(self):
"""
Hidden layer dropout ratios (can improve generalization), specify one value per hidden layer, defaults to 0.5.
Type: ``List[float]``.
:examples:
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> valid = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> features = list(range(0,784))
>>> target = 784
>>> train[target] = train[target].asfactor()
>>> valid[target] = valid[target].asfactor()
>>> model = H2ODeepLearningEstimator(epochs=20,
... hidden=[200,200],
... hidden_dropout_ratios=[0.5,0.5],
... seed=1234,
... activation='tanhwithdropout')
>>> model.train(x=features,
... y=target,
... training_frame=train,
... validation_frame=valid)
>>> model.mse()
"""
return self._parms.get("hidden_dropout_ratios")
@hidden_dropout_ratios.setter
def hidden_dropout_ratios(self, hidden_dropout_ratios):
assert_is_type(hidden_dropout_ratios, None, [numeric])
self._parms["hidden_dropout_ratios"] = hidden_dropout_ratios
@property
def l1(self):
"""
L1 regularization (can add stability and improve generalization, causes many weights to become 0).
Type: ``float``, defaults to ``0.0``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> hh_imbalanced = H2ODeepLearningEstimator(l1=1e-5,
... activation="Rectifier",
... loss="CrossEntropy",
... hidden=[200,200],
... epochs=1,
... balance_classes=False,
... reproducible=True,
... seed=1234)
>>> hh_imbalanced.train(x=list(range(54)),y=54, training_frame=covtype)
>>> hh_imbalanced.mse()
"""
return self._parms.get("l1")
@l1.setter
def l1(self, l1):
assert_is_type(l1, None, numeric)
self._parms["l1"] = l1
@property
def l2(self):
"""
L2 regularization (can add stability and improve generalization, causes many weights to be small.
Type: ``float``, defaults to ``0.0``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> hh_imbalanced = H2ODeepLearningEstimator(l2=1e-5,
... activation="Rectifier",
... loss="CrossEntropy",
... hidden=[200,200],
... epochs=1,
... balance_classes=False,
... reproducible=True,
... seed=1234)
>>> hh_imbalanced.train(x=list(range(54)),y=54, training_frame=covtype)
>>> hh_imbalanced.mse()
"""
return self._parms.get("l2")
@l2.setter
def l2(self, l2):
assert_is_type(l2, None, numeric)
self._parms["l2"] = l2
@property
def max_w2(self):
"""
Constraint for squared sum of incoming weights per unit (e.g. for Rectifier).
Type: ``float``, defaults to ``3.4028235e+38``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> cov_dl = H2ODeepLearningEstimator(activation="RectifierWithDropout",
... hidden=[10,10],
... epochs=10,
... input_dropout_ratio=0.2,
... l1=1e-5,
... max_w2=10.5,
... stopping_rounds=0)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.mse()
"""
return self._parms.get("max_w2")
@max_w2.setter
def max_w2(self, max_w2):
assert_is_type(max_w2, None, float)
self._parms["max_w2"] = max_w2
@property
def initial_weight_distribution(self):
"""
Initial weight distribution.
Type: ``Literal["uniform_adaptive", "uniform", "normal"]``, defaults to ``"uniform_adaptive"``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(initial_weight_distribution="Uniform",
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("initial_weight_distribution")
@initial_weight_distribution.setter
def initial_weight_distribution(self, initial_weight_distribution):
assert_is_type(initial_weight_distribution, None, Enum("uniform_adaptive", "uniform", "normal"))
self._parms["initial_weight_distribution"] = initial_weight_distribution
@property
def initial_weight_scale(self):
"""
Uniform: -value...value, Normal: stddev.
Type: ``float``, defaults to ``1.0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(initial_weight_scale=1.5,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("initial_weight_scale")
@initial_weight_scale.setter
def initial_weight_scale(self, initial_weight_scale):
assert_is_type(initial_weight_scale, None, numeric)
self._parms["initial_weight_scale"] = initial_weight_scale
@property
def initial_weights(self):
"""
A list of H2OFrame ids to initialize the weight matrices of this model with.
Type: ``List[Union[None, str, H2OFrame]]``.
:examples:
>>> iris = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris.csv")
>>> dl1 = H2ODeepLearningEstimator(hidden=[10,10],
... export_weights_and_biases=True)
>>> dl1.train(x=list(range(4)), y=4, training_frame=iris)
>>> p1 = dl1.model_performance(iris).logloss()
>>> ll1 = dl1.predict(iris)
>>> print(p1)
>>> w1 = dl1.weights(0)
>>> w2 = dl1.weights(1)
>>> w3 = dl1.weights(2)
>>> b1 = dl1.biases(0)
>>> b2 = dl1.biases(1)
>>> b3 = dl1.biases(2)
>>> dl2 = H2ODeepLearningEstimator(hidden=[10,10],
... initial_weights=[w1, w2, w3],
... initial_biases=[b1, b2, b3],
... epochs=0)
>>> dl2.train(x=list(range(4)), y=4, training_frame=iris)
>>> dl2.initial_weights
"""
return self._parms.get("initial_weights")
@initial_weights.setter
def initial_weights(self, initial_weights):
assert_is_type(initial_weights, None, [None, str, H2OFrame])
self._parms["initial_weights"] = initial_weights
@property
def initial_biases(self):
"""
A list of H2OFrame ids to initialize the bias vectors of this model with.
Type: ``List[Union[None, str, H2OFrame]]``.
:examples:
>>> iris = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris.csv")
>>> dl1 = H2ODeepLearningEstimator(hidden=[10,10],
... export_weights_and_biases=True)
>>> dl1.train(x=list(range(4)), y=4, training_frame=iris)
>>> p1 = dl1.model_performance(iris).logloss()
>>> ll1 = dl1.predict(iris)
>>> print(p1)
>>> w1 = dl1.weights(0)
>>> w2 = dl1.weights(1)
>>> w3 = dl1.weights(2)
>>> b1 = dl1.biases(0)
>>> b2 = dl1.biases(1)
>>> b3 = dl1.biases(2)
>>> dl2 = H2ODeepLearningEstimator(hidden=[10,10],
... initial_weights=[w1, w2, w3],
... initial_biases=[b1, b2, b3],
... epochs=0)
>>> dl2.train(x=list(range(4)), y=4, training_frame=iris)
>>> dl2.initial_biases
"""
return self._parms.get("initial_biases")
@initial_biases.setter
def initial_biases(self, initial_biases):
assert_is_type(initial_biases, None, [None, str, H2OFrame])
self._parms["initial_biases"] = initial_biases
@property
def loss(self):
"""
Loss function.
Type: ``Literal["automatic", "cross_entropy", "quadratic", "huber", "absolute", "quantile"]``, defaults to
``"automatic"``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> hh_imbalanced = H2ODeepLearningEstimator(l1=1e-5,
... activation="Rectifier",
... loss="CrossEntropy",
... hidden=[200,200],
... epochs=1,
... balance_classes=False,
... reproducible=True,
... seed=1234)
>>> hh_imbalanced.train(x=list(range(54)),y=54, training_frame=covtype)
>>> hh_imbalanced.mse()
"""
return self._parms.get("loss")
@loss.setter
def loss(self, loss):
assert_is_type(loss, None, Enum("automatic", "cross_entropy", "quadratic", "huber", "absolute", "quantile"))
self._parms["loss"] = loss
@property
def distribution(self):
"""
Distribution function
Type: ``Literal["auto", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace",
"quantile", "huber"]``, defaults to ``"auto"``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(distribution="poisson",
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("distribution")
@distribution.setter
def distribution(self, distribution):
assert_is_type(distribution, None, Enum("auto", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber"))
self._parms["distribution"] = distribution
@property
def quantile_alpha(self):
"""
Desired quantile for Quantile regression, must be between 0 and 1.
Type: ``float``, defaults to ``0.5``.
:examples:
>>> boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")
>>> predictors = boston.columns[:-1]
>>> response = "medv"
>>> boston['chas'] = boston['chas'].asfactor()
>>> train, valid = boston.split_frame(ratios=[.8], seed=1234)
>>> boston_dl = H2ODeepLearningEstimator(distribution="quantile",
... quantile_alpha=.8,
... seed=1234)
>>> boston_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> boston_dl.mse()
"""
return self._parms.get("quantile_alpha")
@quantile_alpha.setter
def quantile_alpha(self, quantile_alpha):
assert_is_type(quantile_alpha, None, numeric)
self._parms["quantile_alpha"] = quantile_alpha
@property
def tweedie_power(self):
"""
Tweedie power for Tweedie regression, must be between 1 and 2.
Type: ``float``, defaults to ``1.5``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(tweedie_power=1.5,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("tweedie_power")
@tweedie_power.setter
def tweedie_power(self, tweedie_power):
assert_is_type(tweedie_power, None, numeric)
self._parms["tweedie_power"] = tweedie_power
@property
def huber_alpha(self):
"""
Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1).
Type: ``float``, defaults to ``0.9``.
:examples:
>>> insurance = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/glm_test/insurance.csv")
>>> predictors = insurance.columns[0:4]
>>> response = 'Claims'
>>> insurance['Group'] = insurance['Group'].asfactor()
>>> insurance['Age'] = insurance['Age'].asfactor()
>>> train, valid = insurance.split_frame(ratios=[.8], seed=1234)
>>> insurance_dl = H2ODeepLearningEstimator(distribution="huber",
... huber_alpha=0.9,
... seed=1234)
>>> insurance_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> insurance_dl.mse()
"""
return self._parms.get("huber_alpha")
@huber_alpha.setter
def huber_alpha(self, huber_alpha):
assert_is_type(huber_alpha, None, numeric)
self._parms["huber_alpha"] = huber_alpha
@property
def score_interval(self):
"""
Shortest time interval (in seconds) between model scoring.
Type: ``float``, defaults to ``5.0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(score_interval=3,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("score_interval")
@score_interval.setter
def score_interval(self, score_interval):
assert_is_type(score_interval, None, numeric)
self._parms["score_interval"] = score_interval
@property
def score_training_samples(self):
"""
Number of training set samples for scoring (0 for all).
Type: ``int``, defaults to ``10000``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(score_training_samples=10000,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("score_training_samples")
@score_training_samples.setter
def score_training_samples(self, score_training_samples):
assert_is_type(score_training_samples, None, int)
self._parms["score_training_samples"] = score_training_samples
@property
def score_validation_samples(self):
"""
Number of validation set samples for scoring (0 for all).
Type: ``int``, defaults to ``0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(score_validation_samples=3,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("score_validation_samples")
@score_validation_samples.setter
def score_validation_samples(self, score_validation_samples):
assert_is_type(score_validation_samples, None, int)
self._parms["score_validation_samples"] = score_validation_samples
@property
def score_duty_cycle(self):
"""
Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring).
Type: ``float``, defaults to ``0.1``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> cars_dl = H2ODeepLearningEstimator(score_duty_cycle=0.2,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("score_duty_cycle")
@score_duty_cycle.setter
def score_duty_cycle(self, score_duty_cycle):
assert_is_type(score_duty_cycle, None, numeric)
self._parms["score_duty_cycle"] = score_duty_cycle
@property
def classification_stop(self):
"""
Stopping criterion for classification error fraction on training data (-1 to disable).
Type: ``float``, defaults to ``0.0``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(classification_stop=1.5,
... seed=1234)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.mse()
"""
return self._parms.get("classification_stop")
@classification_stop.setter
def classification_stop(self, classification_stop):
assert_is_type(classification_stop, None, numeric)
self._parms["classification_stop"] = classification_stop
@property
def regression_stop(self):
"""
Stopping criterion for regression error (MSE) on training data (-1 to disable).
Type: ``float``, defaults to ``1e-06``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(regression_stop=1e-6,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("regression_stop")
@regression_stop.setter
def regression_stop(self, regression_stop):
assert_is_type(regression_stop, None, numeric)
self._parms["regression_stop"] = regression_stop
@property
def stopping_rounds(self):
"""
Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the
stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable)
Type: ``int``, defaults to ``5``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(stopping_metric="auc",
... stopping_rounds=3,
... stopping_tolerance=1e-2,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("stopping_rounds")
@stopping_rounds.setter
def stopping_rounds(self, stopping_rounds):
assert_is_type(stopping_rounds, None, int)
self._parms["stopping_rounds"] = stopping_rounds
@property
def stopping_metric(self):
"""
Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anonomaly_score
for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python
client.
Type: ``Literal["auto", "deviance", "logloss", "mse", "rmse", "mae", "rmsle", "auc", "aucpr", "lift_top_group",
"misclassification", "mean_per_class_error", "custom", "custom_increasing"]``, defaults to ``"auto"``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(stopping_metric="auc",
... stopping_rounds=3,
... stopping_tolerance=1e-2,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("stopping_metric")
@stopping_metric.setter
def stopping_metric(self, stopping_metric):
assert_is_type(stopping_metric, None, Enum("auto", "deviance", "logloss", "mse", "rmse", "mae", "rmsle", "auc", "aucpr", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing"))
self._parms["stopping_metric"] = stopping_metric
@property
def stopping_tolerance(self):
"""
Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much)
Type: ``float``, defaults to ``0.0``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(stopping_metric="auc",
... stopping_rounds=3,
... stopping_tolerance=1e-2,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("stopping_tolerance")
@stopping_tolerance.setter
def stopping_tolerance(self, stopping_tolerance):
assert_is_type(stopping_tolerance, None, numeric)
self._parms["stopping_tolerance"] = stopping_tolerance
@property
def max_runtime_secs(self):
"""
Maximum allowed runtime in seconds for model training. Use 0 to disable.
Type: ``float``, defaults to ``0.0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(max_runtime_secs=10,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("max_runtime_secs")
@max_runtime_secs.setter
def max_runtime_secs(self, max_runtime_secs):
assert_is_type(max_runtime_secs, None, numeric)
self._parms["max_runtime_secs"] = max_runtime_secs
@property
def score_validation_sampling(self):
"""
Method used to sample validation dataset for scoring.
Type: ``Literal["uniform", "stratified"]``, defaults to ``"uniform"``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(score_validation_sampling="uniform",
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.auc()
"""
return self._parms.get("score_validation_sampling")
@score_validation_sampling.setter
def score_validation_sampling(self, score_validation_sampling):
assert_is_type(score_validation_sampling, None, Enum("uniform", "stratified"))
self._parms["score_validation_sampling"] = score_validation_sampling
@property
def diagnostics(self):
"""
Enable diagnostics for hidden layers.
Type: ``bool``, defaults to ``True``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(diagnostics=True,
... seed=1234)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.mse()
"""
return self._parms.get("diagnostics")
@diagnostics.setter
def diagnostics(self, diagnostics):
assert_is_type(diagnostics, None, bool)
self._parms["diagnostics"] = diagnostics
@property
def fast_mode(self):
"""
Enable fast mode (minor approximation in back-propagation).
Type: ``bool``, defaults to ``True``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(fast_mode=False,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("fast_mode")
@fast_mode.setter
def fast_mode(self, fast_mode):
assert_is_type(fast_mode, None, bool)
self._parms["fast_mode"] = fast_mode
@property
def force_load_balance(self):
"""
Force extra load balancing to increase training speed for small datasets (to keep all cores busy).
Type: ``bool``, defaults to ``True``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(force_load_balance=False,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("force_load_balance")
@force_load_balance.setter
def force_load_balance(self, force_load_balance):
assert_is_type(force_load_balance, None, bool)
self._parms["force_load_balance"] = force_load_balance
@property
def variable_importances(self):
"""
Compute variable importances for input features (Gedeon method) - can be slow for large networks.
Type: ``bool``, defaults to ``True``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(variable_importances=True,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.mse()
"""
return self._parms.get("variable_importances")
@variable_importances.setter
def variable_importances(self, variable_importances):
assert_is_type(variable_importances, None, bool)
self._parms["variable_importances"] = variable_importances
@property
def replicate_training_data(self):
"""
Replicate the entire training dataset onto every node for faster training on small datasets.
Type: ``bool``, defaults to ``True``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> airlines_dl = H2ODeepLearningEstimator(replicate_training_data=False)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=airlines)
>>> airlines_dl.auc()
"""
return self._parms.get("replicate_training_data")
@replicate_training_data.setter
def replicate_training_data(self, replicate_training_data):
assert_is_type(replicate_training_data, None, bool)
self._parms["replicate_training_data"] = replicate_training_data
@property
def single_node_mode(self):
"""
Run on a single node for fine-tuning of model parameters.
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(single_node_mode=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("single_node_mode")
@single_node_mode.setter
def single_node_mode(self, single_node_mode):
assert_is_type(single_node_mode, None, bool)
self._parms["single_node_mode"] = single_node_mode
@property
def shuffle_training_data(self):
"""
Enable shuffling of training data (recommended if training data is replicated and train_samples_per_iteration is
close to #nodes x #rows, of if using balance_classes).
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(shuffle_training_data=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("shuffle_training_data")
@shuffle_training_data.setter
def shuffle_training_data(self, shuffle_training_data):
assert_is_type(shuffle_training_data, None, bool)
self._parms["shuffle_training_data"] = shuffle_training_data
@property
def missing_values_handling(self):
"""
Handling of missing values. Either MeanImputation or Skip.
Type: ``Literal["mean_imputation", "skip"]``, defaults to ``"mean_imputation"``.
:examples:
>>> boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")
>>> predictors = boston.columns[:-1]
>>> response = "medv"
>>> boston['chas'] = boston['chas'].asfactor()
>>> boston.insert_missing_values()
>>> train, valid = boston.split_frame(ratios=[.8])
>>> boston_dl = H2ODeepLearningEstimator(missing_values_handling="skip")
>>> boston_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> boston_dl.mse()
"""
return self._parms.get("missing_values_handling")
@missing_values_handling.setter
def missing_values_handling(self, missing_values_handling):
assert_is_type(missing_values_handling, None, Enum("mean_imputation", "skip"))
self._parms["missing_values_handling"] = missing_values_handling
@property
def quiet_mode(self):
"""
Enable quiet mode for less output to standard output.
Type: ``bool``, defaults to ``False``.
:examples:
>>> titanic = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv")
>>> titanic['survived'] = titanic['survived'].asfactor()
>>> predictors = titanic.columns
>>> del predictors[1:3]
>>> response = 'survived'
>>> train, valid = titanic.split_frame(ratios=[.8], seed=1234)
>>> titanic_dl = H2ODeepLearningEstimator(quiet_mode=True,
... seed=1234)
>>> titanic_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> titanic_dl.mse()
"""
return self._parms.get("quiet_mode")
@quiet_mode.setter
def quiet_mode(self, quiet_mode):
assert_is_type(quiet_mode, None, bool)
self._parms["quiet_mode"] = quiet_mode
@property
def autoencoder(self):
"""
Auto-Encoder.
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> cars_dl = H2ODeepLearningEstimator(autoencoder=True)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("autoencoder")
@autoencoder.setter
def autoencoder(self, autoencoder):
assert_is_type(autoencoder, None, bool)
self._parms["autoencoder"] = autoencoder
@property
def sparse(self):
"""
Sparse data handling (more efficient for data with lots of 0 values).
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(sparse=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=cars)
>>> cars_dl.auc()
"""
return self._parms.get("sparse")
@sparse.setter
def sparse(self, sparse):
assert_is_type(sparse, None, bool)
self._parms["sparse"] = sparse
@property
def col_major(self):
"""
#DEPRECATED Use a column major weight matrix for input layer. Can speed up forward propagation, but might slow
down backpropagation.
Type: ``bool``, defaults to ``False``.
"""
return self._parms.get("col_major")
@col_major.setter
def col_major(self, col_major):
assert_is_type(col_major, None, bool)
self._parms["col_major"] = col_major
@property
def average_activation(self):
"""
Average activation for sparse auto-encoder. #Experimental
Type: ``float``, defaults to ``0.0``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> cars_dl = H2ODeepLearningEstimator(average_activation=1.5,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("average_activation")
@average_activation.setter
def average_activation(self, average_activation):
assert_is_type(average_activation, None, numeric)
self._parms["average_activation"] = average_activation
@property
def sparsity_beta(self):
"""
Sparsity regularization. #Experimental
Type: ``float``, defaults to ``0.0``.
:examples:
>>> from h2o.estimators import H2OAutoEncoderEstimator
>>> resp = 784
>>> nfeatures = 20
>>> train = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/train.csv.gz")
>>> test = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/bigdata/laptop/mnist/test.csv.gz")
>>> train[resp] = train[resp].asfactor()
>>> test[resp] = test[resp].asfactor()
>>> sid = train[0].runif(0)
>>> train_unsupervised = train[sid>=0.5]
>>> train_unsupervised.pop(resp)
>>> ae_model = H2OAutoEncoderEstimator(activation="Tanh",
... hidden=[nfeatures],
... epochs=1,
... ignore_const_cols=False,
... reproducible=True,
... sparsity_beta=0.5,
... seed=1234)
>>> ae_model.train(list(range(resp)),
... training_frame=train_unsupervised)
>>> ae_model.mse()
"""
return self._parms.get("sparsity_beta")
@sparsity_beta.setter
def sparsity_beta(self, sparsity_beta):
assert_is_type(sparsity_beta, None, numeric)
self._parms["sparsity_beta"] = sparsity_beta
@property
def max_categorical_features(self):
"""
Max. number of categorical features, enforced via hashing. #Experimental
Type: ``int``, defaults to ``2147483647``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> cov_dl = H2ODeepLearningEstimator(balance_classes=True,
... max_categorical_features=2147483647,
... seed=1234)
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.logloss()
"""
return self._parms.get("max_categorical_features")
@max_categorical_features.setter
def max_categorical_features(self, max_categorical_features):
assert_is_type(max_categorical_features, None, int)
self._parms["max_categorical_features"] = max_categorical_features
@property
def reproducible(self):
"""
Force reproducibility on small data (will be slow - only uses 1 thread).
Type: ``bool``, defaults to ``False``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> airlines_dl = H2ODeepLearningEstimator(reproducible=True)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.auc()
"""
return self._parms.get("reproducible")
@reproducible.setter
def reproducible(self, reproducible):
assert_is_type(reproducible, None, bool)
self._parms["reproducible"] = reproducible
@property
def export_weights_and_biases(self):
"""
Whether to export Neural Network weights and biases to H2O Frames.
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(export_weights_and_biases=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("export_weights_and_biases")
@export_weights_and_biases.setter
def export_weights_and_biases(self, export_weights_and_biases):
assert_is_type(export_weights_and_biases, None, bool)
self._parms["export_weights_and_biases"] = export_weights_and_biases
@property
def mini_batch_size(self):
"""
Mini-batch size (smaller leads to better fit, larger can speed up and generalize better).
Type: ``int``, defaults to ``1``.
:examples:
>>> covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
>>> covtype[54] = covtype[54].asfactor()
>>> predictors = covtype.columns[0:54]
>>> response = 'C55'
>>> train, valid = covtype.split_frame(ratios=[.8], seed=1234)
>>> cov_dl = H2ODeepLearningEstimator(activation="RectifierWithDropout",
... hidden=[10,10],
... epochs=10,
... input_dropout_ratio=0.2,
... l1=1e-5,
... max_w2=10.5,
... stopping_rounds=0)
... mini_batch_size=35
>>> cov_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cov_dl.mse()
"""
return self._parms.get("mini_batch_size")
@mini_batch_size.setter
def mini_batch_size(self, mini_batch_size):
assert_is_type(mini_batch_size, None, int)
self._parms["mini_batch_size"] = mini_batch_size
@property
def categorical_encoding(self):
"""
Encoding scheme for categorical features
Type: ``Literal["auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder",
"sort_by_response", "enum_limited"]``, defaults to ``"auto"``.
:examples:
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
>>> airlines["Year"]= airlines["Year"].asfactor()
>>> airlines["Month"]= airlines["Month"].asfactor()
>>> airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
>>> airlines["Cancelled"] = airlines["Cancelled"].asfactor()
>>> airlines['FlightNum'] = airlines['FlightNum'].asfactor()
>>> predictors = ["Origin", "Dest", "Year", "UniqueCarrier",
... "DayOfWeek", "Month", "Distance", "FlightNum"]
>>> response = "IsDepDelayed"
>>> train, valid= airlines.split_frame(ratios=[.8], seed=1234)
>>> encoding = "one_hot_internal"
>>> airlines_dl = H2ODeepLearningEstimator(categorical_encoding=encoding,
... seed=1234)
>>> airlines_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> airlines_dl.mse()
"""
return self._parms.get("categorical_encoding")
@categorical_encoding.setter
def categorical_encoding(self, categorical_encoding):
assert_is_type(categorical_encoding, None, Enum("auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder", "sort_by_response", "enum_limited"))
self._parms["categorical_encoding"] = categorical_encoding
@property
def elastic_averaging(self):
"""
Elastic averaging between compute nodes can improve distributed model convergence. #Experimental
Type: ``bool``, defaults to ``False``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(elastic_averaging=True,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("elastic_averaging")
@elastic_averaging.setter
def elastic_averaging(self, elastic_averaging):
assert_is_type(elastic_averaging, None, bool)
self._parms["elastic_averaging"] = elastic_averaging
@property
def elastic_averaging_moving_rate(self):
"""
Elastic averaging moving rate (only if elastic averaging is enabled).
Type: ``float``, defaults to ``0.9``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(elastic_averaging_moving_rate=.8,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("elastic_averaging_moving_rate")
@elastic_averaging_moving_rate.setter
def elastic_averaging_moving_rate(self, elastic_averaging_moving_rate):
assert_is_type(elastic_averaging_moving_rate, None, numeric)
self._parms["elastic_averaging_moving_rate"] = elastic_averaging_moving_rate
@property
def elastic_averaging_regularization(self):
"""
Elastic averaging regularization strength (only if elastic averaging is enabled).
Type: ``float``, defaults to ``0.001``.
:examples:
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> cars_dl = H2ODeepLearningEstimator(elastic_averaging_regularization=.008,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> cars_dl.mse()
"""
return self._parms.get("elastic_averaging_regularization")
@elastic_averaging_regularization.setter
def elastic_averaging_regularization(self, elastic_averaging_regularization):
assert_is_type(elastic_averaging_regularization, None, numeric)
self._parms["elastic_averaging_regularization"] = elastic_averaging_regularization
@property
def export_checkpoints_dir(self):
"""
Automatically export generated models to this directory.
Type: ``str``.
:examples:
>>> import tempfile
>>> from os import listdir
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios=[.8], seed=1234)
>>> checkpoints_dir = tempfile.mkdtemp()
>>> cars_dl = H2ODeepLearningEstimator(export_checkpoints_dir=checkpoints_dir,
... seed=1234)
>>> cars_dl.train(x=predictors,
... y=response,
... training_frame=train,
... validation_frame=valid)
>>> len(listdir(checkpoints_dir))
"""
return self._parms.get("export_checkpoints_dir")
@export_checkpoints_dir.setter
def export_checkpoints_dir(self, export_checkpoints_dir):
assert_is_type(export_checkpoints_dir, None, str)
self._parms["export_checkpoints_dir"] = export_checkpoints_dir
@property
def auc_type(self):
"""
Set default multinomial AUC type.
Type: ``Literal["auto", "none", "macro_ovr", "weighted_ovr", "macro_ovo", "weighted_ovo"]``, defaults to
``"auto"``.
"""
return self._parms.get("auc_type")
@auc_type.setter
def auc_type(self, auc_type):
assert_is_type(auc_type, None, Enum("auto", "none", "macro_ovr", "weighted_ovr", "macro_ovo", "weighted_ovo"))
self._parms["auc_type"] = auc_type
[docs]class H2OAutoEncoderEstimator(H2ODeepLearningEstimator):
"""
:examples:
>>> import h2o as ml
>>> from h2o.estimators.deeplearning import H2OAutoEncoderEstimator
>>> ml.init()
>>> rows = [[1,2,3,4,0]*50, [2,1,2,4,1]*50, [2,1,4,2,1]*50, [0,1,2,34,1]*50, [2,3,4,1,0]*50]
>>> fr = ml.H2OFrame(rows)
>>> fr[4] = fr[4].asfactor()
>>> model = H2OAutoEncoderEstimator()
>>> model.train(x=range(4), training_frame=fr)
"""
supervised_learning = False
def __init__(self, **kwargs):
super(H2OAutoEncoderEstimator, self).__init__(**kwargs)
self._parms['autoencoder'] = True