# -*- encoding: utf-8 -*-
"""
:copyright: (c) 2016 H2O.ai
:license: Apache License Version 2.0 (see LICENSE for details)
"""
from __future__ import absolute_import, division, print_function, unicode_literals
from collections import OrderedDict
from h2o.display import H2ODisplay, display, repr_def, format_to_html, format_to_multiline
from h2o.utils.compatibility import * # NOQA
from h2o.utils.metaclass import backwards_compatibility, deprecated_fn, h2o_meta
from h2o.utils.typechecks import is_type, numeric
[docs]@backwards_compatibility(
instance_attrs=dict(
giniCoef=lambda self, *args, **kwargs: self.gini(*args, **kwargs)
)
)
class MetricsBase(h2o_meta(H2ODisplay)):
"""
A parent class to house common metrics available for the various Metrics types.
The methods here are available across different model categories.
.. note::
This class and its subclasses are used at runtime as mixins: their methods can (and should) be accessed directly
from a metrics object, for example as a result of :func:`~h2o.model.ModelBase.model_performance`.
"""
_on_mapping = OrderedDict(
training_metrics='train',
validation_metrics='validation',
cross_validation_metrics='cross-validation',
_='test'
)
def __init__(self, metric_json, on=None, algo=""):
self._metric_json = metric_json._metric_json if isinstance(metric_json, MetricsBase) else metric_json
self._on = None
self._algo = algo
# assert on is None or on in MetricsBase._on_mapping
self._on = MetricsBase._on_mapping.get(on or '_', None)
if not self._on:
raise ValueError("on param expected to be one of {accepted}, but got {on}: ".format(
accepted=[k for k in MetricsBase._on_mapping if not k.startswith('_')],
on=on
))
[docs] @classmethod
def make(cls, kvs):
"""Factory method to instantiate a MetricsBase object from the list of key-value pairs."""
return cls(metric_json=dict(kvs))
# TODO: convert to actual fields list
def __getitem__(self, key):
return self._metric_json.get(key)
@staticmethod
def _has(dictionary, key):
return key in dictionary and dictionary[key] is not None
def _str_items(self, verbosity=None):
# edge cases
if self._metric_json is None:
return "WARNING: Model metrics cannot be calculated, please check that the response column was correctly provided in your dataset."
metric_type = self._metric_json['__meta']['schema_type']
# metric cond based on data distribution
m_is_binomial = "Binomial" in metric_type
m_is_multinomial = "Multinomial" in metric_type
m_is_ordinal = "Ordinal" in metric_type
m_is_regression = "Regression" in metric_type
# metric cond based on algo
m_is_anomaly = "Anomaly" in metric_type
m_is_clustering = "Clustering" in metric_type
m_is_generic = "Generic" in metric_type
m_is_glm = "GLM" in metric_type
m_is_hglm = "HGLM" in metric_type
m_is_uplift = "Uplift" in metric_type
# fixme: can't we rather check if each value is available instead of doing this weird logic?
# we could have mixin extensions for algos like (H)GLM instead taking everything from this (not so) "base" class.
# specific metric cond
m_supports_logloss = (m_is_binomial or m_is_multinomial or m_is_ordinal) and not m_is_uplift
m_supports_mpce = (m_is_binomial or m_is_multinomial or m_is_ordinal) and not (m_is_glm or m_is_uplift) # GLM excluded?
m_supports_mse = not (m_is_anomaly or m_is_clustering or m_is_uplift)
m_supports_r2 = m_is_regression and m_is_glm
items = [
"{mtype}: {algo}".format(mtype=metric_type, algo=self._algo),
"** Reported on {} data. **".format(self._on),
"",
]
if self.custom_metric_name(): # adding on top: if users specifies a custom metric, it needs to be highlighted.
items.append("{name}: {value}".format(name=self.custom_metric_name(),
value=self.custom_metric_value()))
if m_supports_mse:
items.extend([
"MSE: {}".format(self.mse()),
"RMSE: {}".format(self.rmse()),
])
if m_is_regression:
items.extend([
"MAE: {}".format(self.mae()),
"RMSLE: {}".format(self.rmsle()),
"Mean Residual Deviance: {}".format(self.mean_residual_deviance()),
])
if m_supports_r2:
items.append("R^2: {}".format(self.r2()))
if m_supports_logloss:
items.append("LogLoss: {}".format(self.logloss()))
if m_supports_mpce:
items.append("Mean Per-Class Error: {}".format(self._mean_per_class_error()))
if m_is_binomial and not m_is_uplift: # can be picked from H2OBinomialModelMetrics (refers to method not available in this class!)
items.extend([
"AUC: {}".format(self.auc()),
"AUCPR: {}".format(self.aucpr()),
"Gini: {}".format(self.gini()),
])
if m_is_multinomial:
auc, aucpr = self.auc(), self.aucpr()
if is_type(auc, numeric): items.append("AUC: {}".format(auc))
if is_type(aucpr, numeric): items.append("AUCPR: {}".format(aucpr))
if m_is_glm:
if m_is_hglm and not m_is_generic:
items.extend([
"Standard error of fixed columns: {}".format(self.hglm_metric("sefe")),
"Standard error of random columns: {}".format(self.hglm_metric("sere")),
"Coefficients for fixed columns: {}".format(self.hglm_metric("fixedf")),
"Coefficients for random columns: {}".format(self.hglm_metric("ranef")),
"Random column indices: {}".format(self.hglm_metric("randc")),
"Dispersion parameter of the mean model (residual variance for LMM): {}".format(self.hglm_metric("varfix")),
"Dispersion parameter of the random columns (variance of random columns): {}".format(self.hglm_metric("varranef")),
"Convergence reached for algorithm: {}".format(self.hglm_metric("converge")),
"Deviance degrees of freedom for mean part of the model: {}".format(self.hglm_metric("dfrefe")),
"Estimates and standard errors of the linear prediction in the dispersion model: {}".format(self.hglm_metric("summvc1")),
"Estimates and standard errors of the linear predictor for the dispersion parameter of the random columns: {}".format(self.hglm_metric("summvc2")),
"Index of most influential observation (-1 if none): {}".format(self.hglm_metric("bad")),
"H-likelihood: {}".format(self.hglm_metric("hlik")),
"Profile log-likelihood profiled over random columns: {}".format(self.hglm_metric("pvh")),
"Adjusted profile log-likelihood profiled over fixed and random effects: {}".format(self.hglm_metric("pbvh")),
"Conditional AIC: {}".format(self.hglm_metric("caic")),
])
else:
items.extend([
"Null degrees of freedom: {}".format(self.null_degrees_of_freedom()),
"Residual degrees of freedom: {}".format(self.residual_degrees_of_freedom()),
"Null deviance: {}".format(self.null_deviance()),
"Residual deviance: {}".format(self.residual_deviance()),
])
if is_type(self.aic(), numeric): items.append("AIC: {}".format(self.aic()))
items.extend(self._str_items_custom())
return items
def _str_items_custom(self):
return []
def _repr_(self):
return repr_def(self, attributes='all')
def _str_(self, verbosity=None):
items = self._str_items(verbosity)
if isinstance(items, list):
return format_to_multiline(items)
return items
def _str_html_(self, verbosity=None):
items = self._str_items(verbosity)
if isinstance(items, list):
return format_to_html(items)
return items
[docs] def show(self, verbosity=None, fmt=None):
return display(self, fmt=fmt, verbosity=verbosity)
[docs] def r2(self):
"""The R squared coefficient.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.r2()
"""
return self._metric_json["r2"]
[docs] def logloss(self):
"""Log loss.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.logloss()
"""
return self._metric_json["logloss"]
[docs] def nobs(self):
"""
The number of observations.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> perf = cars_gbm.model_performance()
>>> perf.nobs()
"""
return self._metric_json["nobs"]
[docs] def mean_residual_deviance(self):
"""The mean residual deviance for this set of metrics.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/AirlinesTest.csv.zip")
>>> air_gbm = H2OGradientBoostingEstimator()
>>> air_gbm.train(x=list(range(9)),
... y=9,
... training_frame=airlines,
... validation_frame=airlines)
>>> air_gbm.mean_residual_deviance(train=True,valid=False,xval=False)
"""
return self._metric_json["mean_residual_deviance"]
[docs] def auc(self):
"""The AUC for this set of metrics.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.auc()
"""
return self._metric_json['AUC']
[docs] def aucpr(self):
"""The area under the precision recall curve.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.aucpr()
"""
return self._metric_json['pr_auc']
[docs] @deprecated_fn(replaced_by=aucpr)
def pr_auc(self):
pass
[docs] def aic(self):
"""The AIC for this set of metrics.
:examples:
>>> from h2o.estimators.glm import H2OGeneralizedLinearEstimator
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate.csv.zip")
>>> prostate[2] = prostate[2].asfactor()
>>> prostate[4] = prostate[4].asfactor()
>>> prostate[5] = prostate[5].asfactor()
>>> prostate[8] = prostate[8].asfactor()
>>> predictors = ["AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON"]
>>> response = "CAPSULE"
>>> train, valid = prostate.split_frame(ratios=[.8],seed=1234)
>>> pros_glm = H2OGeneralizedLinearEstimator(family="binomial")
>>> pros_glm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> pros_glm.aic()
"""
return self._metric_json['AIC']
[docs] def gini(self):
"""Gini coefficient.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.gini()
"""
return self._metric_json['Gini']
[docs] def mse(self):
"""The MSE for this set of metrics.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.mse()
"""
return self._metric_json['MSE']
[docs] def rmse(self):
"""The RMSE for this set of metrics.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor()
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "economy_20mpg"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.rmse()
"""
return self._metric_json['RMSE']
[docs] def mae(self):
"""The MAE for this set of metrics.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(distribution = "poisson",
... seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.mae()
"""
return self._metric_json['mae']
[docs] def rmsle(self):
"""The RMSLE for this set of metrics.
:examples:
>>> from h2o.estimators.gbm import H2OGradientBoostingEstimator
>>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
>>> predictors = ["displacement","power","weight","acceleration","year"]
>>> response = "cylinders"
>>> train, valid = cars.split_frame(ratios = [.8], seed = 1234)
>>> cars_gbm = H2OGradientBoostingEstimator(distribution = "poisson",
... seed = 1234)
>>> cars_gbm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> cars_gbm.rmsle()
"""
return self._metric_json['rmsle']
[docs] def residual_deviance(self):
"""The residual deviance if the model has it, otherwise None.
:examples:
>>> from h2o.estimators.glm import H2OGeneralizedLinearEstimator
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate.csv.zip")
>>> prostate[2] = prostate[2].asfactor()
>>> prostate[4] = prostate[4].asfactor()
>>> prostate[5] = prostate[5].asfactor()
>>> prostate[8] = prostate[8].asfactor()
>>> predictors = ["AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON"]
>>> response = "CAPSULE"
>>> train, valid = prostate.split_frame(ratios=[.8],seed=1234)
>>> pros_glm = H2OGeneralizedLinearEstimator(family="binomial")
>>> pros_glm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> pros_glm.residual_deviance()
"""
if MetricsBase._has(self._metric_json, "residual_deviance"):
return self._metric_json["residual_deviance"]
return None
[docs] def hglm_metric(self, metric_string):
if MetricsBase._has(self._metric_json, metric_string):
return self._metric_json[metric_string]
return None
[docs] def residual_degrees_of_freedom(self):
"""The residual DoF if the model has residual deviance, otherwise None.
:examples:
>>> from h2o.estimators.glm import H2OGeneralizedLinearEstimator
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate.csv.zip")
>>> prostate[2] = prostate[2].asfactor()
>>> prostate[4] = prostate[4].asfactor()
>>> prostate[5] = prostate[5].asfactor()
>>> prostate[8] = prostate[8].asfactor()
>>> predictors = ["AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON"]
>>> response = "CAPSULE"
>>> train, valid = prostate.split_frame(ratios=[.8],seed=1234)
>>> pros_glm = H2OGeneralizedLinearEstimator(family="binomial")
>>> pros_glm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> pros_glm.residual_degrees_of_freedom()
"""
if MetricsBase._has(self._metric_json, "residual_degrees_of_freedom"):
return self._metric_json["residual_degrees_of_freedom"]
return None
[docs] def null_deviance(self):
"""The null deviance if the model has residual deviance, otherwise None.
:examples:
>>> from h2o.estimators.glm import H2OGeneralizedLinearEstimator
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate.csv.zip")
>>> prostate[2] = prostate[2].asfactor()
>>> prostate[4] = prostate[4].asfactor()
>>> prostate[5] = prostate[5].asfactor()
>>> prostate[8] = prostate[8].asfactor()
>>> predictors = ["AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON"]
>>> response = "CAPSULE"
>>> train, valid = prostate.split_frame(ratios=[.8],seed=1234)
>>> pros_glm = H2OGeneralizedLinearEstimator(family="binomial")
>>> pros_glm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> pros_glm.null_deviance()
"""
if MetricsBase._has(self._metric_json, "null_deviance"):
return self._metric_json["null_deviance"]
return None
[docs] def null_degrees_of_freedom(self):
"""The null DoF if the model has residual deviance, otherwise None.
:examples:
>>> from h2o.estimators.glm import H2OGeneralizedLinearEstimator
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate.csv.zip")
>>> prostate[2] = prostate[2].asfactor()
>>> prostate[4] = prostate[4].asfactor()
>>> prostate[5] = prostate[5].asfactor()
>>> prostate[8] = prostate[8].asfactor()
>>> predictors = ["AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON"]
>>> response = "CAPSULE"
>>> train, valid = prostate.split_frame(ratios=[.8],seed=1234)
>>> pros_glm = H2OGeneralizedLinearEstimator(family="binomial")
>>> pros_glm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> pros_glm.null_degrees_of_freedom()
"""
if MetricsBase._has(self._metric_json, "null_degrees_of_freedom"):
return self._metric_json["null_degrees_of_freedom"]
return None
# private accessor for mean per-class error - the public version is overridden in H2OBinomialModelMetrics with
# a method with different return semantics
def _mean_per_class_error(self):
return self._metric_json['mean_per_class_error']
[docs] def mean_per_class_error(self):
"""The mean per class error.
:examples:
>>> from h2o.estimators.glm import H2OGeneralizedLinearEstimator
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate.csv.zip")
>>> prostate[2] = prostate[2].asfactor()
>>> prostate[4] = prostate[4].asfactor()
>>> prostate[5] = prostate[5].asfactor()
>>> prostate[8] = prostate[8].asfactor()
>>> predictors = ["AGE","RACE","DPROS","DCAPS","PSA","VOL","GLEASON"]
>>> response = "CAPSULE"
>>> train, valid = prostate.split_frame(ratios=[.8],seed=1234)
>>> pros_glm = H2OGeneralizedLinearEstimator(family="binomial")
>>> pros_glm.train(x = predictors,
... y = response,
... training_frame = train,
... validation_frame = valid)
>>> pros_glm.mean_per_class_error()
"""
return self._mean_per_class_error()
[docs] def custom_metric_name(self):
"""Name of custom metric or None."""
if MetricsBase._has(self._metric_json, "custom_metric_name"):
return self._metric_json['custom_metric_name']
else:
return None
[docs] def custom_metric_value(self):
"""Value of custom metric or None."""
if MetricsBase._has(self._metric_json, "custom_metric_value"):
return self._metric_json['custom_metric_value']
else:
return None