# -*- encoding: utf-8 -*-
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.utils.compatibility import *  # NOQA
from h2o.model import ModelBase
[docs]class H2OClusteringModel(ModelBase):
[docs]    def size(self, train=False, valid=False):
        """
        Get the sizes of each cluster.
        If all are ``False`` (default), then return the training metric value.
        If more than one option is set to ``True``, then return a dictionary of metrics where
        the keys are "train" and "valid". This metric is not available in cross-validation metrics.
        :param bool train: If ``True``, return the cluster sizes for the training data.
        :param bool valid: If ``True``, return the cluster sizes for the validation data.
        :returns: The cluster sizes for the specified key(s).
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> size = km.size() # <- Default: return training metrics
        >>> size
        >>> size1 = km.size(train=False,
        ...                 valid=False)
        >>> size1
        """
        tm = ModelBase._get_metrics(self, train, valid, False)
        m = {}
        for k, v in tm.items():
            m[k] = None if v is None else [v[2] for v in v._metric_json["centroid_stats"].cell_values]
        return list(m.values())[0] if len(m) == 1 else m 
[docs]    def num_iterations(self):
        """Get the number of iterations it took to converge or reach max iterations.
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> km.num_iterations()
        """
        o = self._model_json["output"]
        return o["model_summary"]["number_of_iterations"][0] 
[docs]    def betweenss(self, train=False, valid=False, xval=False):
        """
        Get the between cluster sum of squares.
        If all are ``False`` (default), then return the training metric value.
        If more than one option is set to ``True``, then return a dictionary of metrics where
        the keys are "train", "valid", and "xval".
        :param bool train: If ``True``, return the between cluster sum of squares value for the training data.
        :param bool valid: If ``True``, return the between cluster sum of squares value for the validation data.
        :param bool xval: If ``True``, return the between cluster sum of squares value for each of the
            cross-validated splits.
        :returns: The between cluster sum of squares values for the specified key(s).
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> betweenss = km.betweenss() # <- Default: return training metrics
        >>> betweenss
        >>> betweenss3 = km.betweenss(train=False,
        ...                           valid=False,
        ...                           xval=True)
        >>> betweenss3
        """
        tm = ModelBase._get_metrics(self, train, valid, xval)
        m = {}
        for k, v in tm.items():
            m[k] = None if v is None else v._metric_json["betweenss"]
        return list(m.values())[0] if len(m) == 1 else m 
[docs]    def totss(self, train=False, valid=False, xval=False):
        """
        Get the total sum of squares.
        If all are ``False`` (default), then return the training metric value.
        If more than one option is set to ``True``, then return a dictionary of metrics where
        the keys are "train", "valid", and "xval".
        :param bool train: If ``True``, return the total sum of squares value for the training data.
        :param bool valid: If ``True``, return the total sum of squares value for the validation data.
        :param bool xval: If ``True``, return the total sum of squares value for each of the cross-validated splits.
        :returns: The total sum of squares values for the specified key(s).
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> totss = km.totss() # <- Default: return training metrics
        >>> totss
        """
        tm = ModelBase._get_metrics(self, train, valid, xval)
        m = {}
        for k, v in tm.items():
            m[k] = None if v is None else v._metric_json["totss"]
        return list(m.values())[0] if len(m) == 1 else m 
[docs]    def tot_withinss(self, train=False, valid=False, xval=False):
        """
        Get the total within cluster sum of squares.
        If all are ``False`` (default), then return the training metric value.
        If more than one option is set to ``True``, then return a dictionary of metrics where
        the keys are "train", "valid", and "xval".
        :param bool train: If ``True``, return the total within cluster sum of squares value for the training data.
        :param bool valid: If ``True``, return the total within cluster sum of squares value for the validation data.
        :param bool xval: If ``True``, return the total within cluster sum of squares value for each of the
            cross-validated splits.
        :returns: The total within cluster sum of squares values for the specified key(s).
        :examples:
        >>> >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> tot_withinss = km.tot_withinss() # <- Default: return training metrics
        >>> tot_withinss
        >>> tot_withinss2 = km.tot_withinss(train=True,
        ...                                 valid=False,
        ...                                 xval=True)
        >>> tot_withinss2
        """
        tm = ModelBase._get_metrics(self, train, valid, xval)
        m = {}
        for k, v in tm.items():
            m[k] = None if v is None else v._metric_json["tot_withinss"]
        return list(m.values())[0] if len(m) == 1 else m 
[docs]    def withinss(self, train=False, valid=False):
        """
        Get the within cluster sum of squares for each cluster.
        If all are ``False`` (default), then return the training metric value.
        If more than one option is set to ``True``, then return a dictionary of metrics where
        the keys are "train" and "valid". This metric is not available in cross-validation metrics.
        :param bool train: If ``True``, return the total sum of squares value for the training data.
        :param bool valid: If ``True``, return the total sum of squares value for the validation data.
        :returns: The total sum of squares values for the specified key(s).
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> withinss = km.withinss() # <- Default: return training metrics
        >>> withinss
        >>> withinss2 = km.withinss(train=True,
        ...                         valid=True)
        >>> withinss2
        """
        tm = ModelBase._get_metrics(self, train, valid, False)
        m = {}
        for k, v in tm.items():
            m[k] = None if v is None else [z[-1] for z in v._metric_json["centroid_stats"].cell_values]
        return list(m.values())[0] if len(m) == 1 else m 
[docs]    def centroid_stats(self, train=False, valid=False):
        """
        Get the centroid statistics for each cluster.
        If all are ``False`` (default), then return the training metric value.
        If more than one option is set to ``True``, then return a dictionary of metrics where
        the keys are "train" and "valid". This metric is not available in cross-validation metrics.
        :param bool train: If ``True``, return the centroid statistic for the training data.
        :param bool valid: If ``True``, return the centroid statistic for the validation data.
        :returns: The centroid statistics for the specified key(s).
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> centroid_stats = km.centroid_stats() # <- Default: return training metrics
        >>> centroid_stats
        >>> centroid_stats1 = km.centroid_stats(train=True,
        ...                                     valid=False)
        >>> centroid_stats1
        """
        tm = ModelBase._get_metrics(self, train, valid, False)
        m = {}
        for k, v in tm.items():
            m[k] = None if v is None else v._metric_json["centroid_stats"]
        return list(m.values())[0] if len(m) == 1 else m 
[docs]    def centers(self):
        """The centers for the KMeans model.
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> km.centers()
        """
        o = self._model_json["output"]
        cvals = o["centers"].cell_values
        centers = [list(cval[1:]) for cval in cvals]
        return centers 
[docs]    def centers_std(self):
        """The standardized centers for the KMeans model.
        :examples:
        >>> from h2o.estimators.kmeans import H2OKMeansEstimator
        >>>
        >>> iris = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/iris/iris_train.csv")
        >>> km = H2OKMeansEstimator(k=3, nfolds=3)
        >>> km.train(x=list(range(4)), training_frame=iris)
        >>> km.centers_std()
        """
        o = self._model_json["output"]
        cvals = o["centers_std"].cell_values
        centers_std = [list(cval[1:]) for cval in cvals]
        centers_std = [list(x) for x in zip(*centers_std)]
        return centers_std