Logo
2.2.23
  • About Sparkling Water
  • Typical Use Case
  • Sparkling Water Requirements
  • Design
  • Configuration
  • Deployment
  • How to…
    • Extending H2O Jar Manually
    • Calling H2O Algorithms
    • Running Sparkling Water
    • Changing the Default Port
    • Enabling SSL
    • Enabling LDAP
    • Enabling Kerberos Authentication
    • Running Sparkling Water on Kerberized Hadoop Cluster
    • Spark Frame <–> H2O Frame Conversions
    • H2O Frame as Spark’s Data Source
    • Creating H2OFrame from an Existing Key
    • Train XGBoost Model in Sparkling Water
    • Using Grid Search GBM in Spark Pipelines
    • Change Sparkling Shell Logging Level
    • Change Sparkling Shell Logs Location
    • Obtain Sparkling Water Logs
    • Use Sparkling Water via Spark Packages
  • Development
  • PySparkling
  • RSparkling
  • Using RSparkling
  • Frequently Asked Questions
  • Change Log
H2O Sparkling Water
  • Docs »
  • How to…
  • View page source

How to…¶

General

  • Extending H2O Jar Manually
  • Calling H2O Algorithms
  • Running Sparkling Water
  • Changing the Default Port

Security

  • Enabling SSL
  • Enabling LDAP
    • Configuring LDAP in Scala
    • Configuring LDAP in Python (PySparkling)
  • Enabling Kerberos Authentication
    • Configuring Kerberos Auth in Scala
    • Configuring Kerberos Auth in Python (PySparkling)
  • Running Sparkling Water on Kerberized Hadoop Cluster
    • Internal Backend
    • External Backend

Frames Conversions and Creation

  • Spark Frame <–> H2O Frame Conversions
    • Converting an H2OFrame into an RDD[T]
    • Converting an H2OFrame into a DataFrame
    • Converting an RDD[T] into an H2OFrame
    • Converting a DataFrame into an H2OFrame
  • H2O Frame as Spark’s Data Source
    • Usage in Python - PySparkling
    • Usage in Scala
    • Specifying Saving Mode
  • Creating H2OFrame from an Existing Key

Modelling

  • Train XGBoost Model in Sparkling Water
    • Running XGBoost in Scala
    • Running XGBoost in Python
    • XGBoost Memory Configuration

Spark Pipelines

  • Using Grid Search GBM in Spark Pipelines
    • Prepare the environment
    • Define the Pipeline Stages
    • Create and Train the Pipeline
    • Run Predictions

Logging

  • Change Sparkling Shell Logging Level
  • Change Sparkling Shell Logs Location
    • Client
    • Worker Nodes
  • Obtain Sparkling Water Logs
    • Logs for Sparkling Water on YARN
    • Logs for Standalone Sparkling Water

As Spark Package

  • Use Sparkling Water via Spark Packages
Next Previous

© Copyright 2016-2018 H2O.ai. Last updated on Aug 28, 2018.

Built with Sphinx using a theme provided by Read the Docs.