Importing H2O Mojo¶
H2O Mojo can be imported to Sparkling Water from all data sources supported by Apache Spark such as local file, S3 or HDFS and the semantics of the import is the same as in the Spark API.
If HDFS is not available for Spark, then call, in Scala:
import org.apache.spark.ml.h2o.models._
val model = H2OMOJOModel.createFromMojo("prostate.mojo")
or in Python:
from pysparkling.ml import *
model = H2OMOJOModel.createFromMojo("prostate.mojo")
attempts to load the mojo file with the specified name from the current working directory. You can also specify the full path such as, in Scala:
import org.apache.spark.ml.h2o.models._
val model = H2OMOJOModel.createFromMojo("/Users/peter/prostate.mojo")
or in Python:
from pysparkling.ml import *
model = H2OMOJOModel.createFromMojo("/Users/peter/prostate.mojo")
In the case Spark is running on Hadoop and HDFS is available, then call, in Scala:
import org.apache.spark.ml.h2o.models._
val model = H2OMOJOModel.createFromMojo("prostate.mojo")
or in Python:
from pysparkling.ml import *
model = H2OMOJOModel.createFromMojo("prostate.mojo")
attempts to load the mojo from the HDFS home directory of the current user. You can also specify the absolute path in this case as, in Scala:
import org.apache.spark.ml.h2o.models._
val model = H2OMOJOModel.createFromMojo("/user/peter/prostate.mojo")
or in Python:
from pysparkling.ml import *
model = H2OMOJOModel.createFromMojo("/user/peter/prostate.mojo")
Both calls load the mojo file from the following location hdfs://{server}:{port}/user/peter/prostate.mojo
, where {server}
and {port}
is automatically filled in by Spark.
You can also manually specify the type of data source you need to use, in that case, you need to provide the schema, in Scala:
import org.apache.spark.ml.h2o.models._
// HDFS
val modelHDFS = H2OMOJOModel.createFromMojo("hdfs:///user/peter/prostate.mojo")
// Local file
val modelLocal = H2OMOJOModel.createFromMojo("file:///Users/peter/prostate.mojo")
or in Python:
from pysparkling.ml import *
# HDFS
modelHDFS = H2OMOJOModel.createFromMojo("hdfs:///user/peter/prostate.mojo")
# Local file
modelLocal = H2OMOJOModel.createFromMojo("file:///Users/peter/prostate.mojo")
The loaded model is an immutable instance, so it’s not possible to change the configuration of the model during its existence.
On the other hand, the model can be configured during its creation via H2OMOJOSettings
, in Scala:
import org.apache.spark.ml.h2o.models._
val settings = H2OMOJOSettings(convertUnknownCategoricalLevelsToNa = true, convertInvalidNumbersToNa = true)
val model = H2OMOJOModel.createFromMojo("prostate.mojo", settings)
or in Python:
from pysparkling.ml import *
settings = H2OMOJOSettings(convertUnknownCategoricalLevelsToNa = True, convertInvalidNumbersToNa = True)
model = H2OMOJOModel.create_from_mojo("prostate.mojo", settings)