Using Grid Search GBM in Spark Pipelines¶
H2O’s Grid Search for GBM is exposed for the Spark pipelines. This tutorial demonstrates how it is used in a simple Spark pipeline on the Ham or Spam dataset.
Prepare the environment¶
Add the data to Spark:
import org.apache.spark.SparkFiles
import water.support.SparkContextSupport
SparkContextSupport.addFiles(sc, "/path/to/smsData.txt")
Prepare the method for loading the data:
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
implicit val sqlContext = spark.sqlContext
def load(dataFile: String)(implicit sqlContext: SQLContext): DataFrame = {
val smsSchema = StructType(Array(
StructField("label", StringType, nullable = false),
StructField("text", StringType, nullable = false)))
val rowRDD = sc.textFile(SparkFiles.get(dataFile)).map(_.split("\t", 2)).filter(r => !r(0).isEmpty).map(p => Row(p(0),p(1)))
sqlContext.createDataFrame(rowRDD, smsSchema)
}
Make sure H2OContext
is available:
import org.apache.spark.h2o._
implicit val h2oContext = H2OContext.getOrCreate(spark)
Define the Pipeline Stages¶
Tokenize the Messages¶
This Spark Transformer tokenizes the messages and splits sentences into words.
val tokenizer = new RegexTokenizer().
setInputCol("text").
setOutputCol("words").
setMinTokenLength(3).
setGaps(false).
setPattern("[a-zA-Z]+")
Remove Ignored Words¶
Remove words that do not bring much value for the model.
val stopWordsRemover = new StopWordsRemover().
setInputCol(tokenizer.getOutputCol).
setOutputCol("filtered").
setStopWords(Array("the", "a", "", "in", "on", "at", "as", "not", "for")).
setCaseSensitive(false)
Hash the Words¶
Crete hashes for the observed words.
val hashingTF = new HashingTF().
setNumFeatures(1 << 10).
setInputCol(stopWordsRemover.getOutputCol).
setOutputCol("wordToIndex")
Create an Inverse Document Frequencies Model¶
Create an IDF model. This creates a numerical representation of how much information a given word provides in the whole message.
val idf = new IDF().
setMinDocFreq(4).
setInputCol(hashingTF.getOutputCol).
setOutputCol("tf_idf")
Create a Grid Search GBM Model¶
First, we need to define the hyper parameters. Hyper parameters are stored in the map where key is the name of the parameter and value is an array of possible values.
We also need to specify the algorithm on which we want to run Grid Search together with its arguments. For this, we can use setAlgo
method.
import scala.collection.mutable.HashMap
import org.apache.spark.ml.h2o.algos.{H2OGBM, H2OGridSearch}
val hyperParams: HashMap[String, Array[AnyRef]] = HashMap()
hyperParams += ("_ntrees" -> Array(1, 30).map(_.asInstanceOf[AnyRef]))
val grid = new H2OGridSearch().
setLabelCol("label").
setHyperParameters(hyperParams).
setAlgo(new H2OGBM().setMaxDepth(30))
Remove Temporary Columns¶
Remove unnecessary columns:
val colPruner = new ColumnPruner().
setColumns(Array[String](idf.getOutputCol, hashingTF.getOutputCol, stopWordsRemover.getOutputCol, tokenizer.getOutputCol))
Create and Train the Pipeline¶
val pipeline = new Pipeline().
setStages(Array(tokenizer, stopWordsRemover, hashingTF, idf, grid, colPruner))
// Train the pipeline model
val data = load("smsData.txt")
val model = pipeline.fit(data)
Run Predictions¶
Prepare the predictor function:
def isSpam(smsText: String,
model: PipelineModel,
hamThreshold: Double = 0.5) = {
val smsTextSchema = StructType(Array(StructField("text", StringType, nullable = false)))
val smsTextRowRDD = sc.parallelize(Seq(smsText)).map(Row(_))
val smsTextDF = sqlContext.createDataFrame(smsTextRowRDD, smsTextSchema)
val prediction = model.transform(smsTextDF)
prediction.select("prediction_output.p1").first.getDouble(0) > hamThreshold
}
And finally, run the predictions:
println(isSpam("Michal, h2oworld party tonight in MV?", model))
println(isSpam("We tried to contact you re your reply to our offer of a Video Handset? 750 anytime any networks mins? UNLIMITED TEXT?", model))