Integration Tests¶
This section describes integration tests that are part of the Sparkling Water project.
The tests are performed for both Sparkling Water backend types (internal and external). Please see Sparkling Water Backends for more information about the backends.
Testing Environments¶
- Local - corresponds to setting Spark
MASTER
variable to one oflocal
, orlocal[*]
, orlocal-cluster[_,_,_]
(local-cluster
mode is just for testing purposes) values - Standalone cluster - the
MASTER
variable points to existing standalone Spark clusterspark://...
- YARN cluster - the
MASTER
variable containsyarn-client
oryarn-cluster
values
Testing Scenarios¶
- Initialize H2O on top of Spark by running
H2OContext.getOrCreate(spark)
and verifying that H2O was properly initialized. - Load data with help from the H2O API from various data sources:
- local disk
- HDFS
- S3N
- Convert from
RDD[T]
toH2OFrame
. - Convert from
DataFrame
toH2OFrame
. - Convert from
H2OFrame
toRDD
. - Convert from
H2OFrame
toDataFrame
. - Integrate with H2O Algorithms using RDD as algorithm input.
- Integrate with MLlib Algorithms using H2OFrame as algorithm input (KMeans).
- Integrate with MLlib pipelines.
Integration Tests Example¶
The following code reflects the use cases listed above. The code is executed in all testing environments (if applicable). Spark 2.0+ is required:
- local
- standalone cluster
- YARN
- Initialize H2O:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) import h2oContext.implicits._
- Load data:
From the local disk:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) import java.io.File val df: H2OFrame = new H2OFrame(new File("examples/smalldata/airlines/allyears2k_headers.zip"))Note: The file must be present on all nodes. Specifically in the case of the Sparkling Water internal backend, this must be present on all nodes with Spark. In the case of the Sparkling Water external backend, this must be present on all nodes with H2O.
From HDFS:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) val path = "hdfs://mr-0xd6.0xdata.loc/datasets/airlines_all.csv" val uri = new java.net.URI(path) val airlinesHF = new H2OFrame(uri)From S3N:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) val path = "s3n://h2o-airlines-unpacked/allyears2k.csv" val uri = new java.net.URI(path) val airlinesHF = new H2OFrame(uri)Note: Spark/H2O needs to know the AWS credentials specified in
core-site.xml
. The credentials are passed viaHADOOP_CONF_DIR
, which points to a configuration directory withcore-site.xml
.
- Convert from
RDD[T]
toH2OFrame
:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) val rdd = sc.parallelize(1 to 1000, 100).map( v => IntHolder(Some(v))) val hf: H2OFrame = h2oContext.asH2OFrame(rdd)
- Convert from
DataFrame
toH2OFrame
:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) import spark.implicits._ val df = spark.sparkContext.parallelize(1 to 1000, 100).map(v => IntHolder(Some(v))).toDF val hf = h2oContext.asH2OFrame(df)
- Convert from
H2OFrame
toRDD[T]
:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) val rdd = spark.sparkContext.parallelize(1 to 1000, 100).map(v => IntHolder(Some(v))) val hf: H2OFrame = h2oContext.asH2OFrame(rdd) val newRdd = h2oContext.asRDD[IntHolder](hf)
- Convert from
H2OFrame
toDataFrame
:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) import spark.implicits._ val df = spark.sparkContext.parallelize(1 to 1000, 100).map(v => IntHolder(Some(v))).toDF val hf = h2oContext.asH2OFrame(df) val newRdd = h2oContext.asDataFrame(hf)
- Integrate with H2O Algorithms using RDD as algorithm input:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) import h2oContext.implicits._ import org.apache.spark.examples.h2o._ val path = "examples/smalldata/prostate.csv" val prostateText = spark.sparkContext.textFile(path) val prostateRDD = prostateText.map(_.split(",")).map(row => ProstateParse(row)) import _root_.hex.tree.gbm.GBM import _root_.hex.tree.gbm.GBMModel.GBMParameters val train: H2OFrame = prostateRDD val gbmParams = new GBMParameters() gbmParams._train = train gbmParams._response_column = "CAPSULE" gbmParams._ntrees = 10 val gbmModel = new GBM(gbmParams).trainModel.get
- Integrate with MLlib algorithms:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import org.apache.spark.h2o._ val h2oContext = H2OContext.getOrCreate(spark) import org.apache.spark.examples.h2o._ import java.io.File val path = "examples/smalldata/prostate.csv" val prostateHF = new H2OFrame(new File(path)) val prostateRDD = h2oContext.asRDD[Prostate](prostateHF) import org.apache.spark.mllib.clustering.KMeans import org.apache.spark.mllib.linalg.Vectors val train = prostateRDD.map( v => Vectors.dense(v.CAPSULE.get*1.0, v.AGE.get*1.0, v.DPROS.get*1.0,v.DCAPS.get*1.0, v.GLEASON.get*1.0)) val clusters = KMeans.train(train, 5, 20)