Parameters of H2OPCA

Affected Class

  • ai.h2o.sparkling.ml.features.H2OPCA

Parameters

  • Each parameter has also a corresponding getter and setter method. (E.g.: label -> getLabel() , setLabel(...) )

ignoredCols

Names of columns to ignore for training.

Scala default value: null ; Python default value: None

Also available on the trained model.

outputCol

Output column name

Default value: "H2OPCA_c0ba678bb9b3__output"

Also available on the trained model.

columnsToCategorical

List of columns to convert to categorical before modelling

Scala default value: Array() ; Python default value: []

computeMetrics

Whether to compute metrics on the training data.

Scala default value: true ; Python default value: True

Also available on the trained model.

convertInvalidNumbersToNa

If set to ‘true’, the model converts invalid numbers to NA during making predictions.

Scala default value: false ; Python default value: False

Also available on the trained model.

convertUnknownCategoricalLevelsToNa

If set to ‘true’, the model converts unknown categorical levels to NA during making predictions.

Scala default value: false ; Python default value: False

Also available on the trained model.

dataFrameSerializer

A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.

Default value: "ai.h2o.sparkling.utils.JSONDataFrameSerializer"

Also available on the trained model.

exportCheckpointsDir

Automatically export generated models to this directory.

Scala default value: null ; Python default value: None

Also available on the trained model.

ignoreConstCols

Ignore constant columns.

Scala default value: true ; Python default value: True

Also available on the trained model.

imputeMissing

Whether to impute missing entries with the column mean.

Scala default value: false ; Python default value: False

Also available on the trained model.

inputCols

The array of input columns

Scala default value: Array() ; Python default value: []

Also available on the trained model.

k

Rank of matrix approximation.

Default value: 1

Also available on the trained model.

keepBinaryModels

If set to true, all binary models created during execution of the fit method will be kept in DKV of H2O-3 cluster.

Scala default value: false ; Python default value: False

maxIterations

Maximum training iterations.

Default value: 1000

Also available on the trained model.

maxRuntimeSecs

Maximum allowed runtime in seconds for model training. Use 0 to disable.

Default value: 0.0

Also available on the trained model.

modelId

Destination id for this model; auto-generated if not specified.

Scala default value: null ; Python default value: None

pcaImpl

Specify the implementation to use for computing PCA (via SVD or EVD): MTJ_EVD_DENSEMATRIX - eigenvalue decompositions for dense matrix using MTJ; MTJ_EVD_SYMMMATRIX - eigenvalue decompositions for symmetric matrix using MTJ; MTJ_SVD_DENSEMATRIX - singular-value decompositions for dense matrix using MTJ; JAMA - eigenvalue decompositions for dense matrix using JAMA. References: JAMA - http://math.nist.gov/javanumerics/jama/; MTJ - https://github.com/fommil/matrix-toolkits-java/. Possible values are "MTJ_EVD_DENSEMATRIX", "MTJ_EVD_SYMMMATRIX", "MTJ_SVD_DENSEMATRIX", "JAMA".

Default value: "MTJ_EVD_SYMMMATRIX"

Also available on the trained model.

pcaMethod

Specify the algorithm to use for computing the principal components: GramSVD - uses a distributed computation of the Gram matrix, followed by a local SVD; Power - computes the SVD using the power iteration method (experimental); Randomized - uses randomized subspace iteration method; GLRM - fits a generalized low-rank model with L2 loss function and no regularization and solves for the SVD using local matrix algebra (experimental). Possible values are "GramSVD", "Power", "Randomized", "GLRM".

Default value: "GramSVD"

Also available on the trained model.

scoreEachIteration

Whether to score during each iteration of model training.

Scala default value: false ; Python default value: False

Also available on the trained model.

seed

RNG seed for initialization.

Scala default value: -1L ; Python default value: -1

Also available on the trained model.

splitRatio

Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set.

Default value: 1.0

transform

Transformation of training data. Possible values are "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE".

Default value: "NONE"

Also available on the trained model.

useAllFactorLevels

Whether first factor level is included in each categorical expansion.

Scala default value: false ; Python default value: False

Also available on the trained model.

validationDataFrame

A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable!

Scala default value: null ; Python default value: None