Using H2O Binary Model in Sparkling Water¶
Sparkling Water can generate binary models and can also load already existing models trained for example in H2O-3.
Train Model in Sparkling Water and Obtain Binary model¶
We first train a model using Sparkling Water API from which we can extract the binary model class. The binary model class contains methods used to work with binary models.
Scala
import ai.h2o.sparkling._
val hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
import org.apache.spark.SparkFiles
spark.sparkContext.addFile("https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/prostate/prostate.csv")
val sparkDF = spark.read.option("header", "true").option("inferSchema", "true").csv(SparkFiles.get("prostate.csv"))
Select algorithm, set the parameter keepBinaryModels
to true
, train the model.
import ai.h2o.sparkling.ml.algos.H2OXGBoostClassifier
val estimator = new H2OXGBoostClassifier().setLabelCol("CAPSULE").setKeepBinaryModels(true)
val mojoModel = estimator.fit(sparkDF)
Python
from pysparkling import *
hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
import h2o
frame = h2o.import_file("https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/prostate/prostate.csv")
sparkDF = hc.asSparkFrame(frame)
Select algorithm, set the parameter keepBinaryModels
to True
, train the model.
from pysparkling.ml import H2OXGBoostClassifier
estimator = H2OXGBoostClassifier(labelCol = "CAPSULE", keepBinaryModels = True)
mojoModel = estimator.fit(sparkDF)
To obtain the binary model once the model training has finished, run:
Scala
val binaryModel = estimator.getBinaryModel()
Python
binaryModel = estimator.getBinaryModel()
Utilization of Binary Model in H2O-3 API¶
The following scoring example demonstrates how a binary model trained with the SW API can be utilized with the H2O-3 API:
Python
h2oBinaryModel = h2o.get_model(binaryModel.modelId)
h2oBinaryModel.predict(test_data=frame)
Save Binary Model to File System¶
The following example demonstrates how a binary model can be stored on a file system:
Scala
val binaryModel = estimator.getBinaryModel()
binaryModel.write("/tmp/binary.model")
Python
binaryModel = estimator.getBinaryModel()
binaryModel.write("/tmp/binary.model")
In case of a Hadoop-enabled system, the command by default uses HDFS. To reference a path on the local file system of
the Spark driver, the path must be prefixed with file://
when HDFS is enabled.
Load Existing Binary Model¶
Before you start, please make sure that your H2OContext
is running as we need H2O to be running.
Also please make sure that Sparkling Water is of the same version as the H2O version in which
the binary model was trained. If this condition is not met, Sparkling Water throws an exception.
To load binary model, run:
Scala
import ai.h2o.sparkling._
import ai.h2o.sparkling.ml.models.H2OBinaryModel
val hc = H2OContext.getOrCreate()
val model = H2OBinaryModel.read(path)
Python
from pysparkling import *
from pysparkling.ml import H2OBinaryModel
hc = H2OContext.getOrCreate()
model = H2OBinaryModel.read(path)
R
library(rsparkling)
sc <- spark_connect(master = "local")
hc <- H2OContext.getOrCreate()
model <- H2OBinaryModel.read(path)