Parameters of H2OGLRM¶
Affected Class¶
ai.h2o.sparkling.ml.features.H2OGLRM
Parameters¶
Each parameter has also a corresponding getter and setter method. (E.g.:
label
->getLabel()
,setLabel(...)
)
- maxScoringIterations
The maximum number of iterations used in MOJO scoring to update X
Default value:
100
Also available on the trained model.
- reconstructedCol
Reconstructed column name. This column contains reconstructed input values (A_hat=X*Y instead of just X).
Default value:
"H2OGLRM_562c0fd2d727__reconstructed"
Also available on the trained model.
- withReconstructedCol
A flag identifying whether a column with reconstructed input values will be produced or not.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- lossByColNames
Columns names for which loss function will be overridden by the ‘lossByCol’ parameter
Scala default value:
null
; Python default value:None
- outputCol
Output column name
Default value:
"H2OGLRM_562c0fd2d727__output"
Also available on the trained model.
- userX
User-specified initial matrix X.
Scala default value:
null
; Python default value:None
- userY
User-specified initial matrix Y.
Scala default value:
null
; Python default value:None
- columnsToCategorical
List of columns to convert to categorical before modelling
Scala default value:
Array()
; Python default value:[]
- convertInvalidNumbersToNa
If set to ‘true’, the model converts invalid numbers to NA during making predictions.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- convertUnknownCategoricalLevelsToNa
If set to ‘true’, the model converts unknown categorical levels to NA during making predictions.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- dataFrameSerializer
A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.
Default value:
"ai.h2o.sparkling.utils.JSONDataFrameSerializer"
Also available on the trained model.
- expandUserY
Expand categorical columns in user-specified initial Y.
Scala default value:
true
; Python default value:True
Also available on the trained model.
- exportCheckpointsDir
Automatically export generated models to this directory.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- gammaX
Regularization weight on X matrix.
Default value:
0.0
Also available on the trained model.
- gammaY
Regularization weight on Y matrix.
Default value:
0.0
Also available on the trained model.
- ignoreConstCols
Ignore constant columns.
Scala default value:
true
; Python default value:True
Also available on the trained model.
- ignoredCols
Names of columns to ignore for training.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- imputeOriginal
Reconstruct original training data by reversing transform.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- init
Initialization mode. Possible values are
"Random"
,"SVD"
,"PlusPlus"
,"User"
,"Power"
.Default value:
"PlusPlus"
Also available on the trained model.
- initStepSize
Initial step size.
Default value:
1.0
Also available on the trained model.
- inputCols
The array of input columns
Scala default value:
Array()
; Python default value:[]
Also available on the trained model.
- k
Rank of matrix approximation.
Default value:
1
Also available on the trained model.
- keepBinaryModels
If set to true, all binary models created during execution of the
fit
method will be kept in DKV of H2O-3 cluster.Scala default value:
false
; Python default value:False
- loadingName
[Deprecated] Use representation_name instead. Frame key to save resulting X.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- loss
Numeric loss function. Possible values are
"Quadratic"
,"Absolute"
,"Huber"
,"Poisson"
,"Periodic(0)"
,"Logistic"
,"Hinge"
,"Categorical"
,"Ordinal"
.Default value:
"Quadratic"
Also available on the trained model.
- lossByCol
Loss function by column (override). Possible values are
"Quadratic"
,"Absolute"
,"Huber"
,"Poisson"
,"Periodic(0)"
,"Logistic"
,"Hinge"
,"Categorical"
,"Ordinal"
.Scala default value:
null
; Python default value:None
Also available on the trained model.
- maxIterations
Maximum number of iterations.
Default value:
1000
Also available on the trained model.
- maxRuntimeSecs
Maximum allowed runtime in seconds for model training. Use 0 to disable.
Default value:
0.0
Also available on the trained model.
- maxUpdates
Maximum number of updates, defaults to 2*max_iterations.
Default value:
2000
Also available on the trained model.
- minStepSize
Minimum step size.
Scala default value:
1.0e-4
; Python default value:1.0E-4
Also available on the trained model.
- modelId
Destination id for this model; auto-generated if not specified.
Scala default value:
null
; Python default value:None
- multiLoss
Categorical loss function. Possible values are
"Quadratic"
,"Absolute"
,"Huber"
,"Poisson"
,"Periodic(0)"
,"Logistic"
,"Hinge"
,"Categorical"
,"Ordinal"
.Default value:
"Categorical"
Also available on the trained model.
- period
Length of period (only used with periodic loss function).
Default value:
1
Also available on the trained model.
- recoverSvd
Recover singular values and eigenvectors of XY.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- regularizationX
Regularization function for X matrix. Possible values are
"None"
,"Quadratic"
,"L2"
,"L1"
,"NonNegative"
,"OneSparse"
,"UnitOneSparse"
,"Simplex"
.Default value:
"None"
Also available on the trained model.
- regularizationY
Regularization function for Y matrix. Possible values are
"None"
,"Quadratic"
,"L2"
,"L1"
,"NonNegative"
,"OneSparse"
,"UnitOneSparse"
,"Simplex"
.Default value:
"None"
Also available on the trained model.
- representationName
Frame key to save resulting X.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- scoreEachIteration
Whether to score during each iteration of model training.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- seed
RNG seed for initialization.
Scala default value:
-1L
; Python default value:-1
Also available on the trained model.
- splitRatio
Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set.
Default value:
1.0
- svdMethod
Method for computing SVD during initialization (Caution: Randomized is currently experimental and unstable). Possible values are
"GramSVD"
,"Power"
,"Randomized"
.Default value:
"Randomized"
Also available on the trained model.
- transform
Transformation of training data. Possible values are
"NONE"
,"STANDARDIZE"
,"NORMALIZE"
,"DEMEAN"
,"DESCALE"
.Default value:
"NONE"
Also available on the trained model.
- validationDataFrame
A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable!
Scala default value:
null
; Python default value:None