public abstract class Layer extends Iced
| Modifier and Type | Class and Description |
|---|---|
static class |
Layer.Input |
static class |
Layer.Linear
Linear output layer is used for regression
Rows with missing values in the response column will be ignored
|
static class |
Layer.Maxout |
static class |
Layer.Output |
static class |
Layer.Rectifier |
static class |
Layer.RectifierDropout |
static class |
Layer.RectifierPrime |
static class |
Layer.Softmax
Softmax output layer is used for classification
Rows with missing values in the response column will be ignored
|
static class |
Layer.Tanh |
static class |
Layer.TanhDropout |
static class |
Layer.TanhPrime
Apply tanh to the weights' transpose.
|
static class |
Layer.VecLinear |
static class |
Layer.VecsInput |
static class |
Layer.VecSoftmax |
| Modifier and Type | Field and Description |
|---|---|
protected double[] |
_a |
protected double[] |
_b |
protected double[] |
_bm |
protected double[] |
_e |
protected Layer |
_previous |
protected float[] |
_w |
protected float[] |
_wm |
static DocGen.FieldDoc[] |
DOC_FIELDS |
NeuralNet.InitialWeightDistribution |
initial_weight_distribution |
double |
initial_weight_scale |
double |
l1 |
double |
l2 |
double |
max_w2 |
static double |
missing_double_value |
static int |
missing_int_value
We need a way to encode a missing value in the neural net forward/back-propagation scheme.
|
long |
momentum_ramp |
double |
momentum_stable |
double |
momentum_start |
double |
rate |
double |
rate_annealing |
double |
rate_decay |
int |
units |
| Constructor and Description |
|---|
Layer() |
| Modifier and Type | Method and Description |
|---|---|
protected abstract void |
bprop() |
Layer |
clone() |
void |
close() |
protected abstract void |
fprop(boolean training) |
void |
init(Layer[] ls,
int index,
boolean weights) |
void |
init(Layer[] ls,
int index,
NeuralNet p) |
double |
momentum(long n) |
double |
rate(long n) |
static void |
shareWeights(Layer[] src,
Layer[] dst) |
static void |
shareWeights(Layer src,
Layer dst) |
void |
transferParams(Layer p) |
void |
transferParams(NeuralNet p) |
AutoBuffer |
writeJSON(AutoBuffer bb) |
frozenType, init, newInstance, read, toDocField, write, writeJSONFieldspublic static DocGen.FieldDoc[] DOC_FIELDS
public int units
public NeuralNet.InitialWeightDistribution initial_weight_distribution
public double initial_weight_scale
public double rate
public double rate_decay
public double rate_annealing
public double l1
public double l2
public double momentum_start
public long momentum_ramp
public double momentum_stable
public double max_w2
protected transient float[] _w
protected transient double[] _b
protected transient double[] _a
protected transient double[] _e
protected transient float[] _wm
protected transient double[] _bm
protected transient Layer _previous
public static final int missing_int_value
public static final double missing_double_value
public void transferParams(NeuralNet p)
public void transferParams(Layer p)
public void init(Layer[] ls, int index, boolean weights)
public void close()
protected abstract void fprop(boolean training)
protected abstract void bprop()
public double rate(long n)
public double momentum(long n)
public AutoBuffer writeJSON(AutoBuffer bb)