| BaseStatsTask |
Class for storing and updating basic column stats (max, min, mean, sigma).
|
| ColSummaryTask |
|
| ConfusionMatrix |
|
| Covariance |
Calculate the covariance and correlation of two variables
|
| Covariance.COV_Task |
|
| DGLM |
|
| DGLM.FamilyIced |
passthrough class around family that properly supports icing
|
| DGLM.GLMJob |
|
| DGLM.GLMModel |
|
| DGLM.GLMModel.GLMValidationTask |
|
| DGLM.GLMParams |
|
| DGLM.GLMValidation |
|
| DGLM.GLMValidationFunc |
|
| DGLM.GramMatrixFunc |
|
| DGLM.LambdaMax |
|
| DGLM.LambdaMaxFunc |
|
| DGLM.LinkIced |
passthrough class around Link that supports Icing
|
| DLSM |
Distributed least squares solvers
|
| DLSM.ADMMSolver |
|
| DLSM.GeneralizedGradientSolver |
Generalized gradient solver for solving LSM problem with combination of L1 and L2 penalty.
|
| DLSM.LSMSolver |
|
| FrameTask<T extends FrameTask<T>> |
|
| FrameTask.DataInfo |
|
| GLMGrid |
|
| GLMGrid.GLMModels |
|
| GridSearch |
|
| GridSearch.GridSearchProgress |
|
| Histogram |
|
| Histogram.BinningTask |
|
| Histogram.Bins |
|
| Histogram.OutlineTask |
|
| KMeans |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
http://www.youtube.com/watch?v=cigXAxV3XcY
|
| KMeans.Lloyds |
|
| KMeans.Sampler |
|
| KMeans.Sqr |
|
| KMeans2 |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
http://www.youtube.com/watch?v=cigXAxV3XcY
|
| KMeans2.KMeans2Model |
|
| KMeans2.KMeans2ModelView |
|
| KMeans2.KMeans2Progress |
|
| KMeans2.Lloyds |
|
| KMeans2.Sampler |
|
| KMeans2.SumSqr |
|
| KMeansModel |
|
| KMeansModel.KMeansApply |
|
| KMeansModel.KMeansScore |
|
| KMeansShared |
|
| Layer |
Neural network layer.
|
| Layer.Input |
|
| Layer.Linear |
Linear output layer is used for regression
Rows with missing values in the response column will be ignored
|
| Layer.Maxout |
|
| Layer.MaxoutDropout |
|
| Layer.Output |
|
| Layer.Rectifier |
|
| Layer.RectifierDropout |
|
| Layer.RectifierPrime |
|
| Layer.Softmax |
Softmax output layer is used for classification
Rows with missing values in the response column will be ignored
|
| Layer.Tanh |
|
| Layer.TanhDropout |
|
| Layer.TanhPrime |
Apply tanh to the weights' transpose.
|
| Layer.VecLinear |
|
| Layer.VecsInput |
|
| Layer.VecSoftmax |
|
| LinearRegression |
|
| LinearRegression.CalcRegressionTask |
|
| LinearRegression.CalcSquareErrorsTasks |
|
| LinearRegression.CalcSumsTask |
|
| LinearRegression.LRResult |
|
| LR2 |
|
| LR2.CalcRegressionTask |
|
| LR2.CalcSquareErrorsTasks |
|
| LR2.CalcSumsTask |
|
| NeuralNet |
Neural network.
|
| NeuralNet.Errors |
|
| NeuralNet.NeuralNetModel |
|
| NeuralNet.NeuralNetScore |
|
| NewRowVecTask<T extends Iced> |
|
| NewRowVecTask.DataFrame |
Struct to keep info about our data.
|
| NewRowVecTask.RowFunc<T extends Iced> |
|
| NodeShuffle |
Shuffle the rows of some dataset, such that the natural placement of the
resulting ValueArray onto Nodes results in some good property.
|
| NOPTask |
|
| OneHot |
|
| ParamsSearch |
Looks for parameters on a set of objects and perform random search.
|
| Quantiles |
Quantile of a column.
|
| Quantiles.BinTask2 |
|
| RowTask<T extends Freezable> |
|
| RowTask.Row<T extends Freezable> |
|
| RowTask.RowFunction<T extends Iced> |
|
| RowVecTask |
|
| RowVecTask.Sampling |
|
| ScoreTask |
|
| ShuffleTask |
Simple shuffle task based on Fisher&Yates algo.
|
| Summary |
|
| Summary.ColSummary |
|
| Summary2 |
Summary of a column.
|
| Summary2.BasicStat |
|
| Summary2.PrePass |
|
| Summary2.SummaryPerRow |
|
| Summary2.SummaryTask2 |
|
| Trainer |
Trains a neural network.
|
| Trainer.Base |
|
| Trainer.Direct |
Trains NN on current thread.
|
| Trainer.MapReduce |
Distributed trainer.
|
| Trainer.OpenCL |
GPU based trainer.
|
| Trainer.Threaded |
Runs several trainers in parallel on the same weights, using threads.
|
| VariableImportance |
|