public class SpeeDRFModel extends Model implements Job.Progress
Model.ModelCategory
Modifier and Type | Field and Description |
---|---|
static DocGen.FieldDoc[] |
DOC_FIELDS |
static java.lang.String |
JSON_CM_CLASS_ERR |
static java.lang.String |
JSON_CM_CLASSES_ERRORS |
static java.lang.String |
JSON_CM_HEADER |
static java.lang.String |
JSON_CM_MATRIX |
static java.lang.String |
JSON_CM_ROWS |
static java.lang.String |
JSON_CM_ROWS_SKIPPED |
static java.lang.String |
JSON_CM_TREES |
static java.lang.String |
JSON_CM_TYPE |
static java.lang.String |
JSON_CONFUSION_KEY |
AUC |
validAUC |
VarImp |
varimp |
protected long |
zeed |
_dataKey, _domains, _modelClassDist, _names, _priorClassDist, training_duration_in_ms, training_start_time
Constructor and Description |
---|
SpeeDRFModel(Key selfKey,
Key jobKey,
Key dataKey,
Frame fr,
Vec response,
Key[] t_keys,
long zeed,
java.lang.String[] cmDomain,
SpeeDRF params) |
Modifier and Type | Method and Description |
---|---|
void |
buildCM(java.lang.StringBuilder sb) |
int |
classes() |
short |
classify(Frame fr,
Chunk[] chks,
int row,
int[] modelDataMap,
int[] votes,
double[] classWt,
java.util.Random rand) |
short |
classify(int[] votes,
double[] classWt,
java.util.Random rand) |
float |
classify0(int tree_id,
Frame fr,
Chunk[] chunks,
int row,
int[] modelDataMap,
short badrow,
boolean regression)
Classify a row according to one particular tree.
|
int[] |
colMap(java.lang.String[] names) |
static float[] |
computeVarImpSD(float[][] vote_diffs) |
Futures |
delete_impl(Futures fs)
Free all internal tree keys.
|
Counter |
depth() |
protected VarImp |
doVarImpCalc(SpeeDRFModel model) |
void |
find_leaves_depth()
Internal computation of depth and number of leaves.
|
void |
generateHTML(java.lang.String title,
java.lang.StringBuilder sb) |
protected void |
generateHTMLAUC(java.lang.StringBuilder sb) |
void |
generateHTMLTreeStats(java.lang.StringBuilder sb,
com.google.gson.JsonObject trees) |
protected void |
generateHTMLVarImp(java.lang.StringBuilder sb) |
SpeeDRF |
get_params() |
Vec |
get_response() |
Request2 |
job() |
Counter |
leaves() |
static SpeeDRFModel |
make(SpeeDRFModel old,
Key tkey,
int nodeIdx) |
protected static AUC |
makeAUC(ConfusionMatrix[] cms,
float[] threshold,
java.lang.String[] cmDomain) |
java.lang.String |
name(int atree) |
float |
progress() |
protected float[] |
score0(double[] data,
float[] preds)
Subclasses implement the scoring logic.
|
int |
size() |
byte[] |
tree(int tree_id)
Return the bits for a particular tree
|
int |
treeCount() |
adapt, calcError, classNames, cm, errStr, getDomainMapping, getDomainMapping, getModelCategory, getUniqueId, isClassifier, missingColumnsType, mse, nclasses, nfeatures, responseName, score, score, score, score, score, score, score0, setModelClassDistribution, start_training, start_training, stop_training, testJavaScoring, toJava, toJava, toJavaDefaultMaxIters, toJavaInit, toJavaInit, toJavaPredictBody, toJavaSuper, varimp
delete_and_lock, delete, delete, delete, delete, is_unlocked, is_wlocked, read_lock, read_lock, unlock_all, unlock, update, write_lock
clone, frozenType, init, newInstance, read, toDocField, write, writeJSON, writeJSONFields
public static DocGen.FieldDoc[] DOC_FIELDS
protected long zeed
@Request.API(help="AUC") public AUC validAUC
@Request.API(help="Variable Importance") public VarImp varimp
public static final java.lang.String JSON_CONFUSION_KEY
public static final java.lang.String JSON_CM_TYPE
public static final java.lang.String JSON_CM_HEADER
public static final java.lang.String JSON_CM_MATRIX
public static final java.lang.String JSON_CM_TREES
public static final java.lang.String JSON_CM_CLASS_ERR
public static final java.lang.String JSON_CM_ROWS
public static final java.lang.String JSON_CM_ROWS_SKIPPED
public static final java.lang.String JSON_CM_CLASSES_ERRORS
public final SpeeDRF get_params()
get_params
in class Model
public Vec get_response()
public int treeCount()
public int size()
public int classes()
public static SpeeDRFModel make(SpeeDRFModel old, Key tkey, int nodeIdx)
public java.lang.String name(int atree)
public byte[] tree(int tree_id)
public Futures delete_impl(Futures fs)
delete_impl
in class Model
public float classify0(int tree_id, Frame fr, Chunk[] chunks, int row, int[] modelDataMap, short badrow, boolean regression)
tree_id
- the number of the tree to usechunks
- the chunk we are usingrow
- the row number in the chunkmodelDataMap
- mapping from model/tree columns to data columnspublic short classify(Frame fr, Chunk[] chks, int row, int[] modelDataMap, int[] votes, double[] classWt, java.util.Random rand)
public short classify(int[] votes, double[] classWt, java.util.Random rand)
public void find_leaves_depth()
public Counter leaves()
public Counter depth()
public int[] colMap(java.lang.String[] names)
protected float[] score0(double[] data, float[] preds)
Model
public float progress()
progress
in interface Job.Progress
public void generateHTML(java.lang.String title, java.lang.StringBuilder sb)
public void generateHTMLTreeStats(java.lang.StringBuilder sb, com.google.gson.JsonObject trees)
public void buildCM(java.lang.StringBuilder sb)
protected static AUC makeAUC(ConfusionMatrix[] cms, float[] threshold, java.lang.String[] cmDomain)
protected void generateHTMLAUC(java.lang.StringBuilder sb)
protected void generateHTMLVarImp(java.lang.StringBuilder sb)
protected VarImp doVarImpCalc(SpeeDRFModel model)
public static float[] computeVarImpSD(float[][] vote_diffs)