Modifier and Type | Class and Description |
---|---|
static class |
GLMModel.DeleteModelTask |
static class |
GLMModel.GetScoringModelTask |
static class |
GLMModel.GLMValidationTask<T extends GLMModel.GLMValidationTask<T>> |
static class |
GLMModel.GLMXValidationTask |
static class |
GLMModel.UnlockModelTask |
Model.ModelAutobufferSerializer, Model.ModelCategory
Modifier and Type | Field and Description |
---|---|
java.lang.String[] |
coefficients_names |
static DocGen.FieldDoc[] |
DOC_FIELDS |
GLMValidation |
null_validation |
double |
ymu |
_dataKey, _domains, _have_cv_results, _modelClassDist, _names, _priorClassDist, GEN_BENCHMARK_CODE, training_duration_in_ms, training_start_time, warnings
Constructor and Description |
---|
GLMModel(GLM2 job,
Key selfKey,
FrameTask.DataInfo dinfo,
GLMParams glm,
GLMValidation nullVal,
double beta_eps,
double alpha,
double lambda_max,
double ymu,
double prior) |
GLMModel(GLM2 parameters,
Key selfKey,
Key dataKey,
GLMParams glmp,
java.lang.String[] coefficients_names,
double[] beta,
FrameTask.DataInfo dinfo,
double threshold) |
Modifier and Type | Method and Description |
---|---|
void |
addSubmodel(double lambda) |
void |
addWarning(java.lang.String w) |
double |
aic() |
double |
auc() |
double[] |
beta() |
java.lang.String[] |
classNames() |
GLMModel |
clone() |
java.util.HashMap<java.lang.String,java.lang.Double> |
coefficients()
get beta coefficients in a map indexed by name
|
int |
compareTo(GLMModel m) |
double |
devExplained() |
FrameTask.DataInfo |
dinfo() |
void |
dropSubmodel() |
GLM2 |
get_params() |
GLMParams |
getParams() |
int |
iteration() |
Request2 |
job() |
double |
lambda() |
protected void |
maybeComputeVariableImportances() |
int |
nclasses() |
int |
ncoefs() |
double[] |
norm_beta(double lambda) |
void |
pickBestModel(boolean useAuc) |
int |
rank() |
int |
rank(double lambda) |
protected float[] |
score0(double[] data,
float[] preds)
Subclasses implement the scoring logic.
|
static void |
setSubmodel(H2O.H2OCountedCompleter cmp,
Key modelKey,
double lambda,
double[] beta,
double[] norm_beta,
int iteration,
long runtime,
boolean sparseCoef) |
static void |
setSubmodel(H2O.H2OCountedCompleter cmp,
Key modelKey,
double lambda,
double[] beta,
double[] norm_beta,
int iteration,
long runtime,
boolean sparseCoef,
GLMValidation val) |
void |
setSubmodelIdx(int l) |
void |
setValidation(GLMValidation val) |
static void |
setXvalidation(H2O.H2OCountedCompleter cmp,
Key modelKey,
double lambda,
GLMValidation val) |
hex.glm.GLMModel.Submodel |
submodelForLambda(double lambda) |
int |
submodelIdForLambda(double lambda) |
java.lang.String |
toString() |
GLMValidation |
validation() |
VarImp |
varimp()
Variable importance of individual input features measured by this model.
|
Key[] |
xvalModels() |
adapt, adapt, calcError, cm, delete_impl, errStr, getDomainMapping, getDomainMapping, getModelCategory, getModelSerializer, getUniqueId, hasCrossValModels, isClassifier, isSupervised, missingColumnsType, mse, nfeatures, printCrossValidationModelsHTML, responseName, score, score, score, score, score, score, score0, scoreCrossValidation, scoreImpl, setCrossValidationError, setModelClassDistribution, start_training, start_training, stop_training, testJavaScoring, toJava, toJava, toJavaDefaultMaxIters, toJavaFillPreds0, toJavaInit, toJavaInit, toJavaNCLASSES, toJavaPredictBody, toJavaSuper, toJavaUnifyPreds
delete_and_lock, delete, delete, delete, delete, is_unlocked, is_wlocked, read_lock, read_lock, unlock_all, unlock_lockable, unlock, update, write_lock
frozenType, init, newInstance, read, toDocField, write, writeJSON, writeJSONFields
public static DocGen.FieldDoc[] DOC_FIELDS
@Request.API(help="mean of response in the training dataset") public final double ymu
@Request.API(help="column names including expanded categorical values") public java.lang.String[] coefficients_names
@Request.API(help="Validation of the null model") public GLMValidation null_validation
public GLMModel(GLM2 parameters, Key selfKey, Key dataKey, GLMParams glmp, java.lang.String[] coefficients_names, double[] beta, FrameTask.DataInfo dinfo, double threshold)
public GLMModel(GLM2 job, Key selfKey, FrameTask.DataInfo dinfo, GLMParams glm, GLMValidation nullVal, double beta_eps, double alpha, double lambda_max, double ymu, double prior)
public final GLM2 get_params()
get_params
in class Model
public FrameTask.DataInfo dinfo()
public Key[] xvalModels()
public double auc()
public double aic()
public double devExplained()
public int compareTo(GLMModel m)
compareTo
in interface java.lang.Comparable<GLMModel>
public void pickBestModel(boolean useAuc)
public static void setSubmodel(H2O.H2OCountedCompleter cmp, Key modelKey, double lambda, double[] beta, double[] norm_beta, int iteration, long runtime, boolean sparseCoef)
public static void setXvalidation(H2O.H2OCountedCompleter cmp, Key modelKey, double lambda, GLMValidation val)
public static void setSubmodel(H2O.H2OCountedCompleter cmp, Key modelKey, double lambda, double[] beta, double[] norm_beta, int iteration, long runtime, boolean sparseCoef, GLMValidation val)
public void addSubmodel(double lambda)
public void dropSubmodel()
public double lambda()
public GLMValidation validation()
public int iteration()
public double[] beta()
public double[] norm_beta(double lambda)
public void addWarning(java.lang.String w)
addWarning
in class Model
protected float[] score0(double[] data, float[] preds)
Model
public final int ncoefs()
public java.lang.String[] classNames()
classNames
in class Model
public GLMParams getParams()
public java.lang.String toString()
toString
in class java.lang.Object
public int rank()
public int submodelIdForLambda(double lambda)
public hex.glm.GLMModel.Submodel submodelForLambda(double lambda)
public int rank(double lambda)
public void setValidation(GLMValidation val)
public void setSubmodelIdx(int l)
public java.util.HashMap<java.lang.String,java.lang.Double> coefficients()
public VarImp varimp()
Model
protected void maybeComputeVariableImportances()