public static final class GLMV3.GLMParametersV3 extends water.api.ModelParametersSchema<GLMModel.GLMParameters,GLMV3.GLMParametersV3>
| Modifier and Type | Field and Description |
|---|---|
double[] |
alpha |
boolean |
balance_classes
For imbalanced data, balance training data class counts via
over/under-sampling.
|
water.api.KeyV3.FrameKeyV3 |
beta_constraints |
double |
beta_epsilon |
float[] |
class_sampling_factors
Desired over/under-sampling ratios per class (lexicographic order).
|
GLMModel.GLMParameters.Family |
family |
static java.lang.String[] |
fields |
double |
gradient_epsilon |
boolean |
intercept |
double[] |
lambda |
double |
lambda_min_ratio |
boolean |
lambda_search |
GLMModel.GLMParameters.Link |
link |
int |
max_active_predictors |
float |
max_after_balance_size
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
|
int |
max_confusion_matrix_size
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
|
int |
max_hit_ratio_k
The maximum number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable)
|
int |
max_iterations |
int |
nlambdas |
boolean |
non_negative |
double |
objective_epsilon |
double |
prior |
GLMModel.GLMParameters.Solver |
solver |
boolean |
standardize |
double |
tweedie_link_power |
double |
tweedie_variance_power |
| Constructor and Description |
|---|
GLMV3.GLMParametersV3() |
append_field_arrays, fields, fillFromImpl, fillImpl, writeParametersJSONcreateAndFillImpl, createImpl, fillFromParms, fillFromParms, get__meta, getExperimentalVersion, getHighestSupportedVersion, getImplClass, getImplClass, getLatestVersion, getSchemaVersion, markdown, markdown, markdown, newInstance, newInstance, registerAllSchemasIfNecessary, schema, schema, schemaClass, schemas, setFieldpublic static java.lang.String[] fields
@API(help="Family. Use binomial for classification with logistic regression, others are for regression problems.",
values={"gaussian","binomial","poisson","gamma","tweedie"},
level=critical)
public GLMModel.GLMParameters.Family family
@API(help="Tweedie variance power",
level=critical,
gridable=true)
public double tweedie_variance_power
@API(help="Tweedie link power",
level=critical,
gridable=true)
public double tweedie_link_power
@API(help="AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns. Coordinate descent is experimental (beta).",
values={"AUTO","IRLSM","L_BFGS","COORDINATE_DESCENT_NAIVE","COORDINATE_DESCENT"},
level=critical)
public GLMModel.GLMParameters.Solver solver
@API(help="distribution of regularization between L1 and L2.",
level=critical,
gridable=true)
public double[] alpha
@API(help="regularization strength",
required=false,
level=critical,
gridable=true)
public double[] lambda
@API(help="use lambda search starting at lambda max, given lambda is then interpreted as lambda min",
level=critical)
public boolean lambda_search
@API(help="number of lambdas to be used in a search",
level=critical)
public int nlambdas
@API(help="Standardize numeric columns to have zero mean and unit variance",
level=critical)
public boolean standardize
@API(help="Restrict coefficients (not intercept) to be non-negative") public boolean non_negative
@API(help="Maximum number of iterations",
level=secondary)
public int max_iterations
@API(help="converge if beta changes less (using L-infinity norm) than beta esilon, ONLY applies to IRLSM solver ",
level=expert)
public double beta_epsilon
@API(help="converge if objective value changes less than this",
level=expert)
public double objective_epsilon
@API(help="converge if objective changes less (using L-infinity norm) than this, ONLY applies to L-BFGS solver",
level=expert)
public double gradient_epsilon
@API(help="",
level=secondary,
values={"family_default","identity","logit","log","inverse","tweedie"})
public GLMModel.GLMParameters.Link link
@API(help="include constant term in the model",
level=expert)
public boolean intercept
@API(help="prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of response does not reflect reality.",
level=expert)
public double prior
@API(help="min lambda used in lambda search, specified as a ratio of lambda_max",
level=expert)
public double lambda_min_ratio
@API(help="beta constraints",
direction=INPUT)
public water.api.KeyV3.FrameKeyV3 beta_constraints
@API(help="Maximum number of active predictors during computation. Use as a stopping criterium to prevent expensive model building with many predictors.",
direction=INPUT,
level=expert)
public int max_active_predictors
@API(help="Balance training data class counts via over/under-sampling (for imbalanced data).",
level=secondary,
direction=INOUT)
public boolean balance_classes
@API(help="Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.",
level=expert,
direction=INOUT)
public float[] class_sampling_factors
@API(help="Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes.",
level=expert,
direction=INOUT)
public float max_after_balance_size
@API(help="Maximum size (# classes) for confusion matrices to be printed in the Logs",
level=secondary,
direction=INOUT)
public int max_confusion_matrix_size
@API(help="Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable)",
level=secondary,
direction=INOUT)
public int max_hit_ratio_k