public static final class GLRMV99.GLRMParametersV99 extends water.api.ModelParametersSchema<GLRMModel.GLRMParameters,GLRMV99.GLRMParametersV99>
| Modifier and Type | Field and Description |
|---|---|
static java.lang.String[] |
fields |
double |
gamma_x |
double |
gamma_y |
GLRM.Initialization |
init |
double |
init_step_size |
int |
k |
java.lang.String |
loading_name |
GLRMModel.GLRMParameters.Loss |
loss |
GLRMModel.GLRMParameters.Loss[] |
loss_by_col |
int[] |
loss_by_col_idx |
int |
max_iterations |
double |
min_step_size |
GLRMModel.GLRMParameters.Loss |
multi_loss |
int |
period |
boolean |
recover_svd |
GLRMModel.GLRMParameters.Regularizer |
regularization_x |
GLRMModel.GLRMParameters.Regularizer |
regularization_y |
long |
seed |
DataInfo.TransformType |
transform |
water.api.KeyV3.FrameKeyV3 |
user_points |
| Constructor and Description |
|---|
GLRMV99.GLRMParametersV99() |
append_field_arrays, fields, fillFromImpl, fillImpl, writeParametersJSONcreateAndFillImpl, createImpl, fillFromParms, fillFromParms, get__meta, getExperimentalVersion, getHighestSupportedVersion, getImplClass, getImplClass, getLatestVersion, getSchemaVersion, markdown, markdown, markdown, newInstance, newInstance, registerAllSchemasIfNecessary, schema, schema, schemaClass, schemas, setFieldpublic static java.lang.String[] fields
@API(help="Transformation of training data",
values={"NONE","STANDARDIZE","NORMALIZE","DEMEAN","DESCALE"})
public DataInfo.TransformType transform
@API(help="Rank of matrix approximation",
required=true,
gridable=true)
public int k
@API(help="Numeric loss function",
values={"Quadratic","L1","Huber","Poisson","Hinge","Logistic","Periodic"})
public GLRMModel.GLRMParameters.Loss loss
@API(help="Enum loss function",
values={"Categorical","Ordinal"})
public GLRMModel.GLRMParameters.Loss multi_loss
@API(help="Loss function by column (override)",
values={"Quadratic","L1","Huber","Poisson","Hinge","Logistic","Periodic","Categorical","Ordinal"})
public GLRMModel.GLRMParameters.Loss[] loss_by_col
@API(help="Loss function by column index (override)") public int[] loss_by_col_idx
@API(help="Length of period (only used with periodic loss function)",
gridable=true)
public int period
@API(help="Regularization function for X matrix",
values={"None","Quadratic","L2","L1","NonNegative","OneSparse","UnitOneSparse","Simplex"})
public GLRMModel.GLRMParameters.Regularizer regularization_x
@API(help="Regularization function for Y matrix",
values={"None","Quadratic","L2","L1","NonNegative","OneSparse","UnitOneSparse","Simplex"})
public GLRMModel.GLRMParameters.Regularizer regularization_y
@API(help="Regularization weight on X matrix",
gridable=true)
public double gamma_x
@API(help="Regularization weight on Y matrix",
gridable=true)
public double gamma_y
@API(help="Maximum number of iterations") public int max_iterations
@API(help="Initial step size",
gridable=true)
public double init_step_size
@API(help="Minimum step size",
gridable=true)
public double min_step_size
@API(help="RNG seed for initialization") public long seed
@API(help="Initialization mode",
values={"Random","SVD","PlusPlus","User"})
public GLRM.Initialization init
@API(help="User-specified initial Y",
required=false)
public water.api.KeyV3.FrameKeyV3 user_points
@API(help="Frame key to save resulting X") public java.lang.String loading_name
@API(help="Recover singular values and eigenvectors of XY") public boolean recover_svd