public class EasyPredictModelWrapper
extends java.lang.Object
implements java.io.Serializable
EasyPredictModelWrapper.ErrorConsumer
in the process of EasyPredictModelWrapper.Config creation.
Advanced scoring features are disabled by default for performance reasons. Configuration flags
allow the user to output also
- leaf node assignment,
- GLRM reconstructed matrix,
- staged probabilities,
- prediction contributions (SHAP values).
Deprecation note: Total number of unknown categorical variables is newly accessible by registering CountingErrorConsumer.
See the top-of-tree master version of this file here on github.| Modifier and Type | Class and Description |
|---|---|
static class |
EasyPredictModelWrapper.Config
Configuration builder for instantiating a Wrapper.
|
static class |
EasyPredictModelWrapper.ErrorConsumer
Observer interface with methods corresponding to errors during the prediction.
|
| Constructor and Description |
|---|
EasyPredictModelWrapper(EasyPredictModelWrapper.Config config)
Create a wrapper for a generated model.
|
EasyPredictModelWrapper(GenModel model)
Create a wrapper for a generated model.
|
| Modifier and Type | Method and Description |
|---|---|
protected double[] |
fillRawData(RowData data,
double[] rawData) |
java.lang.String[] |
getContributionNames()
Returns names of contributions for prediction results with constributions enabled.
|
java.lang.String |
getHeader()
Some autoencoder thing, I'm not sure what this does.
|
ModelCategory |
getModelCategory()
Get the category (type) of model.
|
java.lang.String[] |
getResponseDomainValues()
Get the array of levels for the response column.
|
java.lang.String[] |
leafNodeAssignment(RowData data) |
SharedTreeMojoModel.LeafNodeAssignments |
leafNodeAssignmentExtended(RowData data) |
protected double[] |
preamble(ModelCategory c,
RowData data) |
protected double[] |
preamble(ModelCategory c,
RowData data,
double offset) |
AbstractPrediction |
predict(RowData data) |
protected double[] |
predict(RowData data,
double offset,
double[] preds) |
AbstractPrediction |
predict(RowData data,
ModelCategory mc)
Make a prediction on a new data point.
|
AnomalyDetectionPrediction |
predictAnomalyDetection(RowData data)
Make a prediction on a new data point using a Binomial model.
|
AutoEncoderModelPrediction |
predictAutoEncoder(RowData data)
Make a prediction on a new data point using an AutoEncoder model.
|
BinomialModelPrediction |
predictBinomial(RowData data)
Make a prediction on a new data point using a Binomial model.
|
BinomialModelPrediction |
predictBinomial(RowData data,
double offset)
Make a prediction on a new data point using a Binomial model.
|
ClusteringModelPrediction |
predictClustering(RowData data)
Make a prediction on a new data point using a Clustering model.
|
CoxPHModelPrediction |
predictCoxPH(RowData data) |
DimReductionModelPrediction |
predictDimReduction(RowData data)
Make a prediction on a new data point using a Dimension Reduction model (PCA, GLRM)
|
KLimeModelPrediction |
predictKLime(RowData data) |
MultinomialModelPrediction |
predictMultinomial(RowData data)
Make a prediction on a new data point using a Multinomial model.
|
MultinomialModelPrediction |
predictMultinomial(RowData data,
double offset)
Make a prediction on a new data point using a Multinomial model.
|
OrdinalModelPrediction |
predictOrdinal(RowData data)
Make a prediction on a new data point using a Ordinal model.
|
OrdinalModelPrediction |
predictOrdinal(RowData data,
double offset)
Make a prediction on a new data point using a Ordinal model.
|
RegressionModelPrediction |
predictRegression(RowData data)
Make a prediction on a new data point using a Regression model.
|
RegressionModelPrediction |
predictRegression(RowData data,
double offset)
Make a prediction on a new data point using a Regression model.
|
TargetEncoderPrediction |
predictTargetEncoding(RowData data)
Perform target encoding based on TargetEncoderMojoModel
|
Word2VecPrediction |
predictWord2Vec(RowData data)
Lookup word embeddings for a given word (or set of words).
|
float[] |
predictWord2Vec(java.lang.String[] sentence)
Calculate an aggregated word-embedding for a given input sentence (sequence of words).
|
SortedClassProbability[] |
sortByDescendingClassProbability(BinomialModelPrediction p)
A helper function to return an array of binomial class probabilities for a prediction in sorted order.
|
TargetEncoderPrediction |
transformWithTargetEncoding(RowData data)
Deprecated.
Use
predictTargetEncoding(RowData) instead. |
public final GenModel m
public EasyPredictModelWrapper(EasyPredictModelWrapper.Config config)
config - The wrapper configurationpublic EasyPredictModelWrapper(GenModel model)
model - The generated modelpublic AbstractPrediction predict(RowData data, ModelCategory mc) throws PredictException
data - A new data point.PredictExceptionpublic AbstractPrediction predict(RowData data) throws PredictException
PredictExceptionpublic java.lang.String[] getContributionNames()
public AutoEncoderModelPrediction predictAutoEncoder(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic DimReductionModelPrediction predictDimReduction(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic float[] predictWord2Vec(java.lang.String[] sentence)
throws PredictException
sentence - array of word forming a sentencePredictException - if model is not a WordEmbedding modelpublic Word2VecPrediction predictWord2Vec(RowData data) throws PredictException
data - RawData structure, every key with a String value will be translated to an embedding,
note: keys only purpose is to link the output embedding to the input wordPredictException - if model is not a WordEmbedding modelpublic AnomalyDetectionPrediction predictAnomalyDetection(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic BinomialModelPrediction predictBinomial(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic BinomialModelPrediction predictBinomial(RowData data, double offset) throws PredictException
data - A new data point.offset - An offset for the prediction.PredictException@Deprecated public TargetEncoderPrediction transformWithTargetEncoding(RowData data) throws PredictException
predictTargetEncoding(RowData) instead.PredictExceptionpublic TargetEncoderPrediction predictTargetEncoding(RowData data) throws PredictException
data - RowData structure with data for which we want to produce transformationsPredictExceptionpublic java.lang.String[] leafNodeAssignment(RowData data) throws PredictException
PredictExceptionpublic SharedTreeMojoModel.LeafNodeAssignments leafNodeAssignmentExtended(RowData data) throws PredictException
PredictExceptionpublic MultinomialModelPrediction predictMultinomial(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic MultinomialModelPrediction predictMultinomial(RowData data, double offset) throws PredictException
data - A new data point.offset - Prediction offsetPredictExceptionpublic OrdinalModelPrediction predictOrdinal(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic OrdinalModelPrediction predictOrdinal(RowData data, double offset) throws PredictException
data - A new data point.offset - Prediction offsetPredictExceptionpublic SortedClassProbability[] sortByDescendingClassProbability(BinomialModelPrediction p)
p - The prediction.public ClusteringModelPrediction predictClustering(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic RegressionModelPrediction predictRegression(RowData data) throws PredictException
data - A new data point.PredictExceptionpublic RegressionModelPrediction predictRegression(RowData data, double offset) throws PredictException
data - A new data point.offset - Prediction offsetPredictExceptionpublic KLimeModelPrediction predictKLime(RowData data) throws PredictException
PredictExceptionpublic CoxPHModelPrediction predictCoxPH(RowData data) throws PredictException
PredictExceptionpublic ModelCategory getModelCategory()
public java.lang.String[] getResponseDomainValues()
public java.lang.String getHeader()
protected double[] preamble(ModelCategory c, RowData data) throws PredictException
PredictExceptionprotected double[] preamble(ModelCategory c, RowData data, double offset) throws PredictException
PredictExceptionprotected double[] fillRawData(RowData data, double[] rawData) throws PredictException
PredictExceptionprotected double[] predict(RowData data, double offset, double[] preds) throws PredictException
PredictException