public class IsolationTree
extends java.lang.Object
| Modifier and Type | Class and Description |
|---|---|
static class |
IsolationTree.FilteredData |
static class |
IsolationTree.Node
IsolationTree Node.
|
| Constructor and Description |
|---|
IsolationTree(int _heightLimit,
int _extensionLevel) |
| Modifier and Type | Method and Description |
|---|---|
CompressedIsolationTree |
buildTree(double[][] data,
long seed,
int treeNum)
Implementation of Algorithm 2 (iTree) from paper.
|
static IsolationTree.FilteredData |
extendedIsolationForestSplit(double[][] data,
double[] p,
double[] n)
Compute Extended Isolation Forest split point and filter input data with this split point in the same time.
|
static double[] |
gaussianVector(int n,
int zeroNum,
long seed)
Make a new array initialized to random Gaussian N(0,1) values with the given seed.
|
void |
logNodesHeight()
Helper method.
|
void |
logNodesNumRows()
Helper method.
|
public CompressedIsolationTree buildTree(double[][] data, long seed, int treeNum)
public void logNodesNumRows()
public void logNodesHeight()
public static IsolationTree.FilteredData extendedIsolationForestSplit(double[][] data, double[] p, double[] n)
See Algorithm 2 (iTree) in the paper.
public static double[] gaussianVector(int n,
int zeroNum,
long seed)
zeroNum items zeros (based on extensionLevel value).n - length of generated vectorzeroNum - set randomly selected zeroNum items of vector to zerozeroNum item values are zeros.