public class PermutationVarImp
extends java.lang.Object
Calculate permutation variables importance, by shuffling randomly each variable of the training Frame, scoring the model with the newly created frame using One At a Time approach and Morris method; creating TwoDimTable with relative, scaled, and percentage value TwoDimTable with mean of the absolute value, and standard deviation of all features importance
Constructor and Description |
---|
PermutationVarImp(Model model,
Frame fr)
Constructor that stores the model, frame
|
Modifier and Type | Method and Description |
---|---|
TwoDimTable |
getPermutationVarImp(java.lang.String metric)
Get PermutationVarImp
|
TwoDimTable |
getPermutationVarImp(java.lang.String metric,
long n_samples,
java.lang.String[] features,
long seed)
Get PermutationVarImp
|
TwoDimTable |
getRepeatedPermutationVarImp(java.lang.String metric,
long n_samples,
int n_repeats,
java.lang.String[] features,
long seed)
Get Repeated Permutation Variable Importance
|
public TwoDimTable getPermutationVarImp(java.lang.String metric, long n_samples, java.lang.String[] features, long seed)
metric
- Metric to use to calculate the variable (feature) importancen_samples
- Number of samples to use to calculate the variable (feature) importance; Use -1 to use the whole framefeatures
- Features to evaluateseed
- Seed for random generatorpublic TwoDimTable getRepeatedPermutationVarImp(java.lang.String metric, long n_samples, int n_repeats, java.lang.String[] features, long seed)
metric
- Metric to use to calculate the variable (feature) importancen_samples
- Number of samples to use to calculate the variable (feature) importance; Use -1 to use the whole framen_repeats
- Number of repeatsfeatures
- Features to evaluateseed
- Seed for random generatorpublic TwoDimTable getPermutationVarImp(java.lang.String metric)
metric
- Metric to use to calculate the feature importance