include_algos
¶
Available in: AutoML
Hyperparameter: no
Description¶
This option allows you to specify a list of algorithms to include in an AutoML run during the model-building phase. This option defaults to None/Null, which means that all algorithms are included unless any algorithms are specified in the exclude_algos
option. Note that these two options cannot both be specified.
The algorithms that can be specified include:
DRF
(including both the Random Forest and Extremely Randomized Trees (XRT) models)GLM
XGBoost
(XGBoost GBM)GBM
(H2O GBM)DeepLearning
(Fully-connected multi-layer artificial neural network)StackedEnsemble
Example¶
library(h2o)
h2o.init()
# Import a sample binary outcome training set into H2O
train <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")
# Identify predictors and response
x <- setdiff(names(train), y)
y <- "response"
# For binary classification, response should be a factor
train[, y] <- as.factor(train[, y])
# Train AutoML using only GLM, DeepLearning, and DRF
aml <- h2o.automl(x = x, y = y,
training_frame = train,
max_runtime_secs = 30,
sort_metric = "logloss",
include_algos = c("GLM", "DeepLearning", "DRF"))
# View the AutoML Leaderboard
lb <- aml@leaderboard
lb
model_id auc logloss
1 XRT_1_AutoML_20190321_094944 0.7402090 0.6051397
2 DRF_1_AutoML_20190321_094944 0.7431221 0.6057202
3 DeepLearning_1_AutoML_20190321_094944 0.6994255 0.6309644
4 GLM_grid_1_AutoML_20190321_094944_model_1 0.6826481 0.6385205
5 DeepLearning_grid_1_AutoML_20190321_094944_model_1 0.6707953 0.7042976
mean_per_class_error rmse mse
1 0.3545519 0.4539312 0.2060535
2 0.3683363 0.4527405 0.2049739
3 0.3892368 0.4687153 0.2196940
4 0.3972341 0.4726827 0.2234290
5 0.4385448 0.4911634 0.2412415
[5 rows x 6 columns]
import h2o
from h2o.automl import H2OAutoML
h2o.init()
# Import a sample binary outcome training set into H2O
train = h2o.import_file("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")
# Identify predictors and response
x = train.columns
y = "response"
x.remove(y)
# For binary classification, response should be a factor
train[y] = train[y].asfactor()
# Train AutoML using only GLM, DeepLearning, and DRF
aml = H2OAutoML(max_runtime_secs = 30, sort_metric = "logloss",
include_algos = ["GLM", "DeepLearning", "DRF"])
aml.train(x = x, y = y, training_frame = train)
# View the AutoML Leaderboard
lb = aml.leaderboard
lb
model_id auc logloss mean_per_class_error rmse mse
-------------------------------------------------- -------- --------- ---------------------- -------- --------
XRT_1_AutoML_20190321_095341 0.741603 0.60012 0.342847 0.453342 0.205519
DRF_1_AutoML_20190321_095341 0.740674 0.60294 0.375423 0.453271 0.205454
DeepLearning_grid_1_AutoML_20190321_095341_model_1 0.711473 0.620394 0.387857 0.463987 0.215284
GLM_grid_1_AutoML_20190321_095341_model_1 0.682648 0.63852 0.397234 0.472683 0.223429
DeepLearning_1_AutoML_20190321_095341 0.684733 0.639195 0.418683 0.472425 0.223185
[5 rows x 6 columns]