| Modifier and Type | Class and Description |
|---|---|
static class |
GLMModel.DeleteModelTask |
static class |
GLMModel.GetScoringModelTask |
static class |
GLMModel.GLMValidationTask<T extends GLMModel.GLMValidationTask<T>> |
static class |
GLMModel.GLMXValidationTask |
static class |
GLMModel.UnlockModelTask |
Model.ModelAutobufferSerializer, Model.ModelCategory| Modifier and Type | Field and Description |
|---|---|
java.lang.String[] |
coefficients_names |
static DocGen.FieldDoc[] |
DOC_FIELDS |
_dataKey, _domains, _have_cv_results, _modelClassDist, _names, _priorClassDist, GEN_BENCHMARK_CODE, training_duration_in_ms, training_start_time, warnings| Constructor and Description |
|---|
GLMModel(GLM2 job,
Key selfKey,
FrameTask.DataInfo dinfo,
GLMParams glm,
double beta_eps,
double alpha,
double lambda_max,
double ymu,
double prior) |
| Modifier and Type | Method and Description |
|---|---|
void |
addSubmodel(double lambda) |
void |
addWarning(java.lang.String w) |
double |
aic() |
double |
auc() |
double[] |
beta() |
GLMModel |
clone() |
java.util.HashMap<java.lang.String,java.lang.Double> |
coefficients()
get beta coefficients in a map indexed by name
|
int |
compareTo(GLMModel m) |
double |
devExplained() |
void |
dropSubmodel() |
GLM2 |
get_params() |
GLMParams |
getParams() |
int |
iteration() |
Request2 |
job() |
double |
lambda() |
protected void |
maybeComputeVariableImportances() |
int |
ncoefs() |
double[] |
norm_beta(double lambda) |
void |
pickBestModel(boolean useAuc) |
int |
rank() |
int |
rank(double lambda) |
protected float[] |
score0(double[] data,
float[] preds)
Subclasses implement the scoring logic.
|
void |
setBestSubmodel(double lambda) |
static void |
setSubmodel(H2O.H2OCountedCompleter cmp,
Key modelKey,
double lambda,
double[] beta,
double[] norm_beta,
int iteration,
long runtime,
boolean sparseCoef) |
static void |
setSubmodel(H2O.H2OCountedCompleter cmp,
Key modelKey,
double lambda,
double[] beta,
double[] norm_beta,
int iteration,
long runtime,
boolean sparseCoef,
GLMValidation val) |
void |
setSubmodelIdx(int l) |
void |
setValidation(GLMValidation val) |
static void |
setXvalidation(H2O.H2OCountedCompleter cmp,
Key modelKey,
double lambda,
GLMValidation val) |
hex.glm.GLMModel.Submodel |
submodelForLambda(double lambda) |
int |
submodelIdForLambda(double lambda) |
java.lang.String |
toString() |
GLMValidation |
validation() |
VarImp |
varimp()
Variable importance of individual input features measured by this model.
|
Key[] |
xvalModels() |
adapt, adapt, calcError, classNames, cm, delete_impl, errStr, getDomainMapping, getDomainMapping, getModelCategory, getModelSerializer, getUniqueId, isClassifier, isSupervised, missingColumnsType, mse, nclasses, nfeatures, printCrossValidationModelsHTML, responseName, score, score, score, score, score, score, score0, scoreCrossValidation, scoreImpl, setCrossValidationError, setModelClassDistribution, start_training, start_training, stop_training, testJavaScoring, toJava, toJava, toJavaDefaultMaxIters, toJavaFillPreds0, toJavaInit, toJavaInit, toJavaPredictBody, toJavaSuper, toJavaUnifyPredsdelete_and_lock, delete, delete, delete, delete, is_unlocked, is_wlocked, read_lock, read_lock, unlock_all, unlock_lockable, unlock, update, write_lockfrozenType, init, newInstance, read, toDocField, write, writeJSON, writeJSONFieldspublic static DocGen.FieldDoc[] DOC_FIELDS
@Request.API(help="column names including expanded categorical values") public java.lang.String[] coefficients_names
public GLMModel(GLM2 job, Key selfKey, FrameTask.DataInfo dinfo, GLMParams glm, double beta_eps, double alpha, double lambda_max, double ymu, double prior)
public final GLM2 get_params()
get_params in class Modelpublic Key[] xvalModels()
public double auc()
public double aic()
public double devExplained()
public int compareTo(GLMModel m)
compareTo in interface java.lang.Comparable<GLMModel>public void setBestSubmodel(double lambda)
public void pickBestModel(boolean useAuc)
public static void setSubmodel(H2O.H2OCountedCompleter cmp, Key modelKey, double lambda, double[] beta, double[] norm_beta, int iteration, long runtime, boolean sparseCoef)
public static void setXvalidation(H2O.H2OCountedCompleter cmp, Key modelKey, double lambda, GLMValidation val)
public static void setSubmodel(H2O.H2OCountedCompleter cmp, Key modelKey, double lambda, double[] beta, double[] norm_beta, int iteration, long runtime, boolean sparseCoef, GLMValidation val)
public void addSubmodel(double lambda)
public void dropSubmodel()
public double lambda()
public GLMValidation validation()
public int iteration()
public double[] beta()
public double[] norm_beta(double lambda)
public void addWarning(java.lang.String w)
addWarning in class Modelprotected float[] score0(double[] data,
float[] preds)
Modelpublic final int ncoefs()
public GLMParams getParams()
public java.lang.String toString()
toString in class java.lang.Objectpublic int rank()
public int submodelIdForLambda(double lambda)
public hex.glm.GLMModel.Submodel submodelForLambda(double lambda)
public int rank(double lambda)
public void setValidation(GLMValidation val)
public void setSubmodelIdx(int l)
public java.util.HashMap<java.lang.String,java.lang.Double> coefficients()
public VarImp varimp()
Modelprotected void maybeComputeVariableImportances()