public static class ModelMetricsRegression.MetricBuilderRegression<T extends ModelMetricsRegression.MetricBuilderRegression<T>> extends ModelMetricsSupervised.MetricBuilderSupervised<T>
_domain, _nclasses
Constructor and Description |
---|
ModelMetricsRegression.MetricBuilderRegression() |
ModelMetricsRegression.MetricBuilderRegression(Distribution dist) |
Modifier and Type | Method and Description |
---|---|
ModelMetrics |
makeModelMetrics(Model m,
Frame f,
Frame adaptedFrame,
Frame preds)
Create a model metrics object
|
double[] |
perRow(double[] ds,
float[] yact,
double w,
double o,
Model m) |
double[] |
perRow(double[] ds,
float[] yact,
Model m) |
void |
reduce(T mb) |
postGlobal, weightedSigma
asBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonString, write, writeExternal, writeJSON
public ModelMetricsRegression.MetricBuilderRegression()
public ModelMetricsRegression.MetricBuilderRegression(Distribution dist)
public double[] perRow(double[] ds, float[] yact, Model m)
perRow
in class ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
public double[] perRow(double[] ds, float[] yact, double w, double o, Model m)
perRow
in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
public void reduce(T mb)
reduce
in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
public ModelMetrics makeModelMetrics(Model m, Frame f, Frame adaptedFrame, Frame preds)
ModelMetricsSupervised.MetricBuilderSupervised
makeModelMetrics
in class ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
m
- Modelf
- FrameadaptedFrame
- Adapted Framepreds
- Optional predictions (can be null), only used to compute Gains/Lift table for binomial problems @return