public class DeepLearningModel extends hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput> implements hex.Model.DeepFeatures
| Modifier and Type | Class and Description |
|---|---|
static class |
DeepLearningModel.DeepLearningModelOutput
The Deep Learning model output contains a few extra fields in addition to the metrics in Model.Output
1) Scoring history (raw data)
2) weights/biases (raw data)
3) variable importances (TwoDimTable)
|
static class |
DeepLearningModel.DeepLearningParameters
Deep Learning Parameters
|
| Modifier and Type | Field and Description |
|---|---|
long |
_timeLastIterationEnter |
long |
_timeLastScoreStart |
water.Key |
actual_best_model_key |
long |
actual_train_samples_per_iteration |
double |
epoch_counter |
int |
iterations |
water.Key |
model_info_key |
boolean |
stopped_early |
double |
time_for_communication_us |
long |
total_checkpointed_run_time_ms |
long |
total_scoring_time_ms |
long |
total_setup_time_ms |
long |
total_training_time_ms |
long |
training_rows |
long |
validation_rows |
| Constructor and Description |
|---|
DeepLearningModel(water.Key destKey,
DeepLearningModel.DeepLearningParameters parms,
DeepLearningModel.DeepLearningModelOutput output,
water.fvec.Frame train,
water.fvec.Frame valid,
int nClasses)
Regular constructor (from scratch)
|
DeepLearningModel(water.Key destKey,
DeepLearningModel.DeepLearningParameters parms,
DeepLearningModel cp,
boolean store_best_model,
DataInfo dataInfo)
Constructor to restart from a checkpointed model
|
| Modifier and Type | Method and Description |
|---|---|
double |
calcOutlierThreshold(water.fvec.Vec mse,
double quantile)
Compute quantile-based threshold (in reconstruction error) to find outliers
|
protected long |
checksum_impl() |
void |
delete() |
DeepLearningModel.DeepLearningParameters |
get_params()
Get the parameters actually used for model building, not the user-given ones (_parms)
They might differ since some defaults are filled in, and some invalid combinations are auto-disabled in modifyParams
|
hex.ToEigenVec |
getToEigenVec() |
DeepLearningScoringInfo |
last_scored() |
hex.ModelMetrics.MetricBuilder |
makeMetricBuilder(java.lang.String[] domain) |
double |
meanLoss(DataInfo.Row[] myRows)
Compute the loss function
|
DeepLearningModelInfo |
model_info() |
protected water.fvec.Frame |
predictScoreImpl(water.fvec.Frame orig,
water.fvec.Frame adaptedFr,
java.lang.String destination_key,
water.Job j)
Make either a prediction or a reconstruction.
|
protected double[] |
score0(double[] data,
double[] preds) |
double[] |
score0(double[] data,
double[] preds,
double weight,
double offset)
Predict from raw double values representing the data
|
water.fvec.Frame |
scoreAutoEncoder(water.fvec.Frame frame,
water.Key destination_key,
boolean reconstruction_error_per_feature)
Score auto-encoded reconstruction (on-the-fly, without allocating the reconstruction as done in Frame score(Frame fr))
|
water.fvec.Frame |
scoreDeepFeatures(water.fvec.Frame frame,
int layer)
Score auto-encoded reconstruction (on-the-fly, and materialize the deep features of given layer
|
water.fvec.Frame |
scoreDeepFeatures(water.fvec.Frame frame,
int layer,
water.Job job) |
protected boolean |
toJavaCheckTooBig() |
protected water.util.SBPrintStream |
toJavaInit(water.util.SBPrintStream sb,
water.codegen.CodeGeneratorPipeline fileCtx) |
protected void |
toJavaPredictBody(water.util.SBPrintStream bodySb,
water.codegen.CodeGeneratorPipeline classCtx,
water.codegen.CodeGeneratorPipeline fileCtx,
boolean verboseCode) |
hex.VarImp |
varImp() |
adaptTestForTrain, adaptTestForTrain, addMetrics, addWarning, auc, classification_error, cleanup_adapt, compareTo, defaultThreshold, deleteCrossValidationModels, deviance, deviance, fillScoringInfo, isSupervised, lift_top_group, logloss, loss, mae, makeInteraction, makeInteractions, makeInteractions, makeSchema, makeScoringNames, mean_per_class_error, mse, readAll_impl, remove_impl, rmsle, score, score, score, score, score0, score0, scoreMetrics, scoring_history, scoringDomains, testJavaScoring, toJava, toJava, toJava, toJavaNCLASSES, toJavaPROB, toJavaSuper, toString, writeAll_impldelete_and_lock, delete_and_lock, delete_and_lock, delete, delete, read_lock, read_lock, read_lock, unlock_all, unlock, unlock, unlock, unlock, update, update, update, write_lock, write_lock, write_lockchecksum, readAll, remove, remove, remove, remove, writeAllpublic long total_checkpointed_run_time_ms
public long total_training_time_ms
public long total_scoring_time_ms
public long total_setup_time_ms
public long actual_train_samples_per_iteration
public double time_for_communication_us
public double epoch_counter
public int iterations
public boolean stopped_early
public long training_rows
public long validation_rows
public water.Key actual_best_model_key
public water.Key model_info_key
public long _timeLastIterationEnter
public long _timeLastScoreStart
public DeepLearningModel(water.Key destKey,
DeepLearningModel.DeepLearningParameters parms,
DeepLearningModel cp,
boolean store_best_model,
DataInfo dataInfo)
destKey - New destination key for the modelparms - User-given parameters for checkpoint restartcp - Checkpoint to restart fromstore_best_model - Store only the best model instead of the latest onepublic DeepLearningModel(water.Key destKey,
DeepLearningModel.DeepLearningParameters parms,
DeepLearningModel.DeepLearningModelOutput output,
water.fvec.Frame train,
water.fvec.Frame valid,
int nClasses)
destKey - destination keyparms - DL parametersoutput - DL model outputtrain - Training framevalid - Validation framenClasses - Number of classes (1 for regression or autoencoder)public hex.ToEigenVec getToEigenVec()
getToEigenVec in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>public final DeepLearningModelInfo model_info()
public final hex.VarImp varImp()
public DeepLearningScoringInfo last_scored()
last_scored in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>public final DeepLearningModel.DeepLearningParameters get_params()
public hex.ModelMetrics.MetricBuilder makeMetricBuilder(java.lang.String[] domain)
makeMetricBuilder in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>protected water.fvec.Frame predictScoreImpl(water.fvec.Frame orig,
water.fvec.Frame adaptedFr,
java.lang.String destination_key,
water.Job j)
predictScoreImpl in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>orig - Test datasetadaptedFr - Test dataset, adapted to the modelprotected double[] score0(double[] data,
double[] preds)
score0 in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>public double meanLoss(DataInfo.Row[] myRows)
myRows - Mini-Batch Array of denseRow's containing numerical/categorical predictor and response data (standardized)public double[] score0(double[] data,
double[] preds,
double weight,
double offset)
score0 in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>data - raw array containing categorical values (horizontalized to 1,0,0,1,0,0 etc.) and numerical values (0.35,1.24,5.3234,etc), both can contain NaNspreds - predicted label and per-class probabilities (for classification), predicted target (regression), can contain NaNspublic water.fvec.Frame scoreAutoEncoder(water.fvec.Frame frame,
water.Key destination_key,
boolean reconstruction_error_per_feature)
scoreAutoEncoder in interface hex.Model.DeepFeaturesframe - Original data (can contain response, will be ignored)destination_key - Frame Id for outputreconstruction_error_per_feature - whether to return the squared error per featurepublic water.fvec.Frame scoreDeepFeatures(water.fvec.Frame frame,
int layer)
scoreDeepFeatures in interface hex.Model.DeepFeaturesframe - Original data (can contain response, will be ignored)layer - index of the hidden layer for which to extract the featurespublic water.fvec.Frame scoreDeepFeatures(water.fvec.Frame frame,
int layer,
water.Job job)
scoreDeepFeatures in interface hex.Model.DeepFeaturespublic double calcOutlierThreshold(water.fvec.Vec mse,
double quantile)
mse - Vector containing reconstruction errorsquantile - Quantile for cut-offpublic void delete()
delete in class water.Lockable<DeepLearningModel>protected water.util.SBPrintStream toJavaInit(water.util.SBPrintStream sb,
water.codegen.CodeGeneratorPipeline fileCtx)
toJavaInit in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>protected boolean toJavaCheckTooBig()
toJavaCheckTooBig in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>protected void toJavaPredictBody(water.util.SBPrintStream bodySb,
water.codegen.CodeGeneratorPipeline classCtx,
water.codegen.CodeGeneratorPipeline fileCtx,
boolean verboseCode)
toJavaPredictBody in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>protected long checksum_impl()
checksum_impl in class hex.Model<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>