public static class DeepLearningModel.DeepLearningParameters
extends hex.Model.Parameters
Modifier and Type | Class and Description |
---|---|
static class |
DeepLearningModel.DeepLearningParameters.Activation
Activation functions
|
static class |
DeepLearningModel.DeepLearningParameters.ClassSamplingMethod |
static class |
DeepLearningModel.DeepLearningParameters.InitialWeightDistribution |
static class |
DeepLearningModel.DeepLearningParameters.Loss
Loss functions
Absolute, Quadratic, Huber, Quantile for regression
Quadratic, ModifiedHuber or CrossEntropy for classification
|
static class |
DeepLearningModel.DeepLearningParameters.MissingValuesHandling |
Modifier and Type | Field and Description |
---|---|
DeepLearningModel.DeepLearningParameters.Activation |
_activation
The activation function (non-linearity) to be used the neurons in the hidden layers.
|
boolean |
_adaptive_rate
The implemented adaptive learning rate algorithm (ADADELTA) automatically
combines the benefits of learning rate annealing and momentum
training to avoid slow convergence.
|
boolean |
_autoencoder |
double |
_average_activation |
double |
_classification_stop
The stopping criteria in terms of classification error (1-accuracy) on the
training data scoring dataset.
|
boolean |
_col_major |
boolean |
_diagnostics
Gather diagnostics for hidden layers, such as mean and RMS values of learning
rate, momentum, weights and biases.
|
boolean |
_elastic_averaging |
double |
_elastic_averaging_moving_rate |
double |
_elastic_averaging_regularization |
double |
_epochs
The number of passes over the training dataset to be carried out.
|
double |
_epsilon
The second of two hyper parameters for adaptive learning rate (ADADELTA).
|
boolean |
_export_weights_and_biases |
boolean |
_fast_mode
Enable fast mode (minor approximation in back-propagation), should not affect results significantly.
|
boolean |
_force_load_balance
Increase training speed on small datasets by splitting it into many chunks
to allow utilization of all cores.
|
int[] |
_hidden
The number and size of each hidden layer in the model.
|
double[] |
_hidden_dropout_ratios
A fraction of the inputs for each hidden layer to be omitted from training in order
to improve generalization.
|
water.Key[] |
_initial_biases
Frame keys for initial bias vectors
|
DeepLearningModel.DeepLearningParameters.InitialWeightDistribution |
_initial_weight_distribution
The distribution from which initial weights are to be drawn.
|
double |
_initial_weight_scale
The scale of the distribution function for Uniform or Normal distributions.
|
water.Key[] |
_initial_weights
Frame keys for initial weight matrices
|
double |
_input_dropout_ratio
A fraction of the features for each training row to be omitted from training in order
to improve generalization (dimension sampling).
|
double |
_l1
A regularization method that constrains the absolute value of the weights and
has the net effect of dropping some weights (setting them to zero) from a model
to reduce complexity and avoid overfitting.
|
double |
_l2
A regularization method that constrains the sum of the squared
weights.
|
DeepLearningModel.DeepLearningParameters.Loss |
_loss
The loss (error) function to be minimized by the model.
|
int |
_max_categorical_features
Max.
|
float |
_max_w2
A maximum on the sum of the squared incoming weights into
any one neuron.
|
int |
_mini_batch_size |
DeepLearningModel.DeepLearningParameters.MissingValuesHandling |
_missing_values_handling |
double |
_momentum_ramp
The momentum_ramp parameter controls the amount of learning for which momentum increases
(assuming momentum_stable is larger than momentum_start).
|
double |
_momentum_stable
The momentum_stable parameter controls the final momentum value reached after momentum_ramp training samples.
|
double |
_momentum_start
The momentum_start parameter controls the amount of momentum at the beginning of training.
|
boolean |
_nesterov_accelerated_gradient
The Nesterov accelerated gradient descent method is a modification to
traditional gradient descent for convex functions.
|
boolean |
_overwrite_with_best_model
If enabled, store the best model under the destination key of this model at the end of training.
|
boolean |
_quiet_mode
Enable quiet mode for less output to standard output.
|
double |
_rate
When adaptive learning rate is disabled, the magnitude of the weight
updates are determined by the user specified learning rate
(potentially annealed), and are a function of the difference
between the predicted value and the target value.
|
double |
_rate_annealing
Learning rate annealing reduces the learning rate to "freeze" into
local minima in the optimization landscape.
|
double |
_rate_decay
The learning rate decay parameter controls the change of learning rate across layers.
|
double |
_regression_stop
The stopping criteria in terms of regression error (MSE) on the training
data scoring dataset.
|
boolean |
_replicate_training_data
Replicate the entire training dataset onto every node for faster training on small datasets.
|
boolean |
_reproducible
Force reproducibility on small data (will be slow - only uses 1 thread)
|
double |
_rho
The first of two hyper parameters for adaptive learning rate (ADADELTA).
|
double |
_score_duty_cycle
Maximum fraction of wall clock time spent on model scoring on training and validation samples,
and on diagnostics such as computation of feature importances (i.e., not on training).
|
double |
_score_interval
The minimum time (in seconds) to elapse between model scoring.
|
long |
_score_training_samples
The number of training dataset points to be used for scoring.
|
long |
_score_validation_samples
The number of validation dataset points to be used for scoring.
|
DeepLearningModel.DeepLearningParameters.ClassSamplingMethod |
_score_validation_sampling
Method used to sample the validation dataset for scoring, see Score Validation Samples above.
|
boolean |
_shuffle_training_data
Enable shuffling of training data (on each node).
|
boolean |
_single_node_mode
Run on a single node for fine-tuning of model parameters.
|
boolean |
_sparse |
double |
_sparsity_beta |
boolean |
_standardize
If enabled, automatically standardize the data.
|
double |
_target_ratio_comm_to_comp |
long |
_train_samples_per_iteration
The number of training data rows to be processed per iteration.
|
boolean |
_use_all_factor_levels |
boolean |
_variable_importances
Whether to compute variable importances for input features.
|
_auto_rebalance, _balance_classes, _categorical_encoding, _checkpoint, _class_sampling_factors, _distribution, _fold_assignment, _fold_column, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_predictions, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
DeepLearningModel.DeepLearningParameters() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
algoName() |
protected double |
defaultStoppingTolerance() |
java.lang.String |
fullName() |
java.lang.String |
javaName() |
double |
missingColumnsType() |
long |
progressUnits() |
checksum_impl, checksum, defaultDropConsCols, getOrMakeRealSeed, hasCheckpoint, read_lock_frames, read_unlock_frames, setTrain, train, valid
public boolean _overwrite_with_best_model
public boolean _autoencoder
public boolean _use_all_factor_levels
public boolean _standardize
public DeepLearningModel.DeepLearningParameters.Activation _activation
public int[] _hidden
public double _epochs
public long _train_samples_per_iteration
public double _target_ratio_comm_to_comp
public boolean _adaptive_rate
public double _rho
public double _epsilon
public double _rate
public double _rate_annealing
public double _rate_decay
public double _momentum_start
public double _momentum_ramp
public double _momentum_stable
public boolean _nesterov_accelerated_gradient
public double _input_dropout_ratio
public double[] _hidden_dropout_ratios
public double _l1
public double _l2
public float _max_w2
public DeepLearningModel.DeepLearningParameters.InitialWeightDistribution _initial_weight_distribution
public double _initial_weight_scale
public water.Key[] _initial_weights
public water.Key[] _initial_biases
public DeepLearningModel.DeepLearningParameters.Loss _loss
public double _score_interval
public long _score_training_samples
public long _score_validation_samples
public double _score_duty_cycle
public double _classification_stop
public double _regression_stop
public boolean _quiet_mode
public DeepLearningModel.DeepLearningParameters.ClassSamplingMethod _score_validation_sampling
public boolean _diagnostics
public boolean _variable_importances
public boolean _fast_mode
public boolean _force_load_balance
public boolean _replicate_training_data
public boolean _single_node_mode
public boolean _shuffle_training_data
public DeepLearningModel.DeepLearningParameters.MissingValuesHandling _missing_values_handling
public boolean _sparse
public boolean _col_major
public double _average_activation
public double _sparsity_beta
public int _max_categorical_features
public boolean _reproducible
public boolean _export_weights_and_biases
public boolean _elastic_averaging
public double _elastic_averaging_moving_rate
public double _elastic_averaging_regularization
public int _mini_batch_size
public DeepLearningModel.DeepLearningParameters()
public java.lang.String algoName()
algoName
in class hex.Model.Parameters
public java.lang.String fullName()
fullName
in class hex.Model.Parameters
public java.lang.String javaName()
javaName
in class hex.Model.Parameters
protected double defaultStoppingTolerance()
defaultStoppingTolerance
in class hex.Model.Parameters
public long progressUnits()
progressUnits
in class hex.Model.Parameters
public double missingColumnsType()
missingColumnsType
in class hex.Model.Parameters