public class DeepWaterModel extends hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput> implements hex.Model.DeepFeatures
hex.Model.BigScore, hex.Model.DeepFeatures, hex.Model.ExemplarMembers, hex.Model.GetMostImportantFeatures, hex.Model.GLRMArchetypes, hex.Model.GridSortBy, hex.Model.InteractionPair, hex.Model.JavaModelStreamWriter, hex.Model.LeafNodeAssignment, hex.Model.Output, hex.Model.Parameters
Constructor and Description |
---|
DeepWaterModel(water.Key<DeepWaterModel> destKey,
DeepWaterParameters parms,
DeepWaterModel cp,
DataInfo dataInfo)
Constructor to restart from a checkpointed model
|
DeepWaterModel(water.Key<DeepWaterModel> destKey,
DeepWaterParameters params,
DeepWaterModelOutput output,
water.fvec.Frame train,
water.fvec.Frame valid,
int nClasses)
Regular constructor (from scratch)
|
Modifier and Type | Method and Description |
---|---|
protected long |
checksum_impl() |
protected void |
closeBigScorePredict() |
DeepWaterParameters |
get_params()
Get the parameters actually used for model building, not the user-given ones (_parms)
They might differ since some defaults are filled in, and some invalid combinations are auto-disabled in modifyParams
|
DeepwaterMojoWriter |
getMojo() |
hex.ToEigenVec |
getToEigenVec() |
DeepWaterScoringInfo |
last_scored() |
hex.ModelMetrics.MetricBuilder |
makeMetricBuilder(java.lang.String[] domain) |
DeepWaterModelInfo |
model_info() |
protected water.fvec.Frame |
predictScoreImpl(water.fvec.Frame fr,
water.fvec.Frame adaptFrm,
java.lang.String destination_key,
water.Job j,
boolean computeMetrics) |
protected water.Futures |
remove_impl(water.Futures fs) |
water.api.schemas3.ModelSchemaV3 |
schema() |
protected double[] |
score0(double[] data,
double[] preds)
Single-instance scoring - slow, not optimized for mini-batches - do not use unless you know what you're doing
|
double[] |
score0(double[] data,
double[] preds,
double offset) |
water.fvec.Frame |
scoreAutoEncoder(water.fvec.Frame frame,
water.Key destination_key,
boolean reconstruction_error_per_feature) |
water.fvec.Frame |
scoreDeepFeatures(water.fvec.Frame frame,
int layer) |
water.fvec.Frame |
scoreDeepFeatures(water.fvec.Frame frame,
int layer,
water.Job j) |
water.fvec.Frame |
scoreDeepFeatures(water.fvec.Frame frame,
java.lang.String layer,
water.Job job) |
protected hex.ModelMetrics.MetricBuilder |
scoreMetrics(water.fvec.Frame adaptFrm) |
protected void |
setupBigScorePredict() |
adaptTestForTrain, adaptTestForTrain, addMetrics, addModelMetrics, addWarning, auc, classification_error, cleanup_adapt, compareTo, computeDeviances, data, defaultThreshold, deleteCrossValidationModels, deviance, deviance, fillScoringInfo, getDefaultGridSortBy, isSupervised, lift_top_group, logloss, loss, mae, makeBigScoreTask, makeInteraction, makeInteractions, makeInteractions, makeSchema, makeScoringNames, mean_per_class_error, mse, postProcessPredictions, readAll_impl, rmsle, score, score, score, score, score, score0, score0, scoring_history, scoringDomains, testJavaScoring, testJavaScoring, testJavaScoring, toJava, toJava, toJava, toJavaCheckTooBig, toJavaInit, toJavaNCLASSES, toJavaPredictBody, toJavaPROB, toJavaSuper, toString, writeAll_impl
delete_and_lock, delete_and_lock, delete_and_lock, delete, delete, delete, read_lock, read_lock, read_lock, unlock_all, unlock, unlock, unlock, unlock, update, update, update, write_lock, write_lock, write_lock
checksum, readAll, remove, remove, remove, remove, writeAll
public DeepWaterModel(water.Key<DeepWaterModel> destKey, DeepWaterParameters parms, DeepWaterModel cp, DataInfo dataInfo)
destKey
- New destination key for the modelparms
- User-given parameters for checkpoint restartcp
- Checkpoint to restart frompublic DeepWaterModel(water.Key<DeepWaterModel> destKey, DeepWaterParameters params, DeepWaterModelOutput output, water.fvec.Frame train, water.fvec.Frame valid, int nClasses)
destKey
- destination keyparams
- DL parametersoutput
- DL model outputnClasses
- Number of classes (1 for regression or autoencoder)public DeepwaterMojoWriter getMojo()
getMojo
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
public water.api.schemas3.ModelSchemaV3 schema()
public final DeepWaterModelInfo model_info()
public hex.ToEigenVec getToEigenVec()
getToEigenVec
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
public DeepWaterScoringInfo last_scored()
last_scored
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
public final DeepWaterParameters get_params()
public hex.ModelMetrics.MetricBuilder makeMetricBuilder(java.lang.String[] domain)
makeMetricBuilder
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
protected void setupBigScorePredict()
setupBigScorePredict
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
protected void closeBigScorePredict()
closeBigScorePredict
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
protected double[] score0(double[] data, double[] preds)
score0
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
data
- One single observation unrolled into a double[], with a length equal to the number of input neuronspreds
- Array to store the predictions in (nclasses+1)public double[] score0(double[] data, double[] preds, double offset)
score0
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
protected long checksum_impl()
checksum_impl
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
public water.fvec.Frame scoreAutoEncoder(water.fvec.Frame frame, water.Key destination_key, boolean reconstruction_error_per_feature)
scoreAutoEncoder
in interface hex.Model.DeepFeatures
public water.fvec.Frame scoreDeepFeatures(water.fvec.Frame frame, int layer)
scoreDeepFeatures
in interface hex.Model.DeepFeatures
public water.fvec.Frame scoreDeepFeatures(water.fvec.Frame frame, int layer, water.Job j)
scoreDeepFeatures
in interface hex.Model.DeepFeatures
public water.fvec.Frame scoreDeepFeatures(water.fvec.Frame frame, java.lang.String layer, water.Job job)
scoreDeepFeatures
in interface hex.Model.DeepFeatures
protected water.fvec.Frame predictScoreImpl(water.fvec.Frame fr, water.fvec.Frame adaptFrm, java.lang.String destination_key, water.Job j, boolean computeMetrics)
predictScoreImpl
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
protected hex.ModelMetrics.MetricBuilder scoreMetrics(water.fvec.Frame adaptFrm)
scoreMetrics
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>
protected water.Futures remove_impl(water.Futures fs)
remove_impl
in class hex.Model<DeepWaterModel,DeepWaterParameters,DeepWaterModelOutput>