public final class ComputationState
extends java.lang.Object
Modifier and Type | Class and Description |
---|---|
static class |
ComputationState.GLMSubsetGinfo |
Modifier and Type | Field and Description |
---|---|
boolean |
_lsNeeded |
Constructor and Description |
---|
ComputationState(water.Job job,
GLMModel.GLMParameters parms,
DataInfo dinfo,
GLM.BetaConstraint bc,
int nclasses) |
Modifier and Type | Method and Description |
---|---|
GLM.BetaConstraint |
activeBC() |
DataInfo |
activeData() |
DataInfo |
activeDataMultinomial() |
DataInfo |
activeDataMultinomial(int c) |
protected void |
applyStrongRules(double lambdaNew,
double lambdaOld)
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
|
protected int |
applyStrongRulesMultinomial_old(double lambdaNew,
double lambdaOld)
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
|
protected void |
applyStrongRulesMultinomial(double lambdaNew,
double lambdaOld)
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
|
double[] |
beta() |
double[] |
betaMultinomial() |
double[] |
betaMultinomial(int c,
double[] beta) |
protected boolean |
checkKKTs() |
protected boolean |
checkKKTsMultinomial() |
boolean |
converged() |
double |
deviance() |
void |
dropActiveData() |
double[] |
expandBeta(double[] beta) |
GLM.GLMGradientInfo |
ginfo() |
ComputationState.GLMSubsetGinfo |
ginfoMultinomial(int c) |
GLM.GLMGradientSolver |
gslvr() |
OptimizationUtils.GradientSolver |
gslvrMultinomial(int c) |
double |
l1pen() |
double |
l2pen() |
double |
lambda() |
double |
likelihood() |
double |
objective() |
double |
objective(double[] beta,
double likelihood) |
int[] |
removeCols(int[] cols) |
void |
setActiveClass(int activeClass) |
void |
setBC(GLM.BetaConstraint bc) |
void |
setBetaMultinomial(int c,
double[] beta,
double[] bc) |
void |
setLambda(double lambda) |
void |
setLambdaMax(double lmax) |
java.lang.String |
toString() |
protected double |
updateState(double[] beta,
double likelihood) |
protected double |
updateState(double[] beta,
GLM.GLMGradientInfo ginfo) |
public ComputationState(water.Job job, GLMModel.GLMParameters parms, DataInfo dinfo, GLM.BetaConstraint bc, int nclasses)
nclasses
- - number of classes for multinomial, 1 for everybody elsepublic GLM.GLMGradientSolver gslvr()
public double lambda()
public void setLambdaMax(double lmax)
public void setLambda(double lambda)
public double[] beta()
public GLM.GLMGradientInfo ginfo()
public GLM.BetaConstraint activeBC()
public double likelihood()
public DataInfo activeData()
public DataInfo activeDataMultinomial()
public void dropActiveData()
public java.lang.String toString()
toString
in class java.lang.Object
public double l1pen()
public double l2pen()
protected void applyStrongRules(double lambdaNew, double lambdaOld)
public DataInfo activeDataMultinomial(int c)
public double[] betaMultinomial()
public double[] betaMultinomial(int c, double[] beta)
public ComputationState.GLMSubsetGinfo ginfoMultinomial(int c)
public void setBC(GLM.BetaConstraint bc)
public void setActiveClass(int activeClass)
public double deviance()
public OptimizationUtils.GradientSolver gslvrMultinomial(int c)
public void setBetaMultinomial(int c, double[] beta, double[] bc)
protected int applyStrongRulesMultinomial_old(double lambdaNew, double lambdaOld)
protected void applyStrongRulesMultinomial(double lambdaNew, double lambdaOld)
protected boolean checkKKTsMultinomial()
protected boolean checkKKTs()
public int[] removeCols(int[] cols)
public double objective()
public double objective(double[] beta, double likelihood)
protected double updateState(double[] beta, double likelihood)
public boolean converged()
protected double updateState(double[] beta, GLM.GLMGradientInfo ginfo)
public double[] expandBeta(double[] beta)