public static final class DeepWaterV3.DeepWaterParametersV3 extends water.api.schemas3.ModelParametersSchemaV3<DeepWaterParameters,DeepWaterV3.DeepWaterParametersV3>
Modifier and Type | Field and Description |
---|---|
DeepWaterParameters.Activation |
activation
The activation function (non-linearity) to be used by the neurons in the hidden layers.
|
boolean |
autoencoder |
DeepWaterParameters.Backend |
backend |
boolean |
balance_classes
For imbalanced data, balance training data class counts via
over/under-sampling.
|
boolean |
cache_data |
int |
channels |
float[] |
class_sampling_factors
Desired over/under-sampling ratios per class (lexicographic order).
|
double |
classification_stop
The stopping criteria in terms of classification error (1-accuracy) on the
training data scoring dataset.
|
double |
clip_gradient |
int[] |
device_id |
boolean |
diagnostics
Gather diagnostics for hidden layers, such as mean and RMS values of learning
rate, momentum, weights and biases.
|
double |
epochs
The number of passes over the training dataset to be carried out.
|
java.lang.String |
export_native_parameters_prefix |
static java.lang.String[] |
fields |
boolean |
gpu |
int[] |
hidden
The number and size of each hidden layer in the model.
|
double[] |
hidden_dropout_ratios
A fraction of the inputs for each hidden layer to be omitted from training in order
to improve generalization.
|
int[] |
image_shape |
double |
input_dropout_ratio
A fraction of the features for each training row to be omitted from training in order
to improve generalization (dimension sampling).
|
double |
learning_rate
When adaptive learning rate is disabled, the magnitude of the weight
updates are determined by the user specified learning rate
(potentially annealed), and are a function of the difference
between the predicted value and the target value.
|
double |
learning_rate_annealing
Learning rate annealing reduces the learning rate to "freeze" into
local minima in the optimization landscape.
|
float |
max_after_balance_size
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
|
int |
max_confusion_matrix_size
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
|
int |
max_hit_ratio_k
The maximum number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable)
|
java.lang.String |
mean_image_file |
int |
mini_batch_size |
double |
momentum_ramp
The momentum_ramp parameter controls the amount of learning for which momentum increases
(assuming momentum_stable is larger than momentum_start).
|
double |
momentum_stable
The momentum_stable parameter controls the final momentum value reached after momentum_ramp training samples.
|
double |
momentum_start
The momentum_start parameter controls the amount of momentum at the beginning of training.
|
DeepWaterParameters.Network |
network |
java.lang.String |
network_definition_file |
java.lang.String |
network_parameters_file |
boolean |
overwrite_with_best_model
If enabled, store the best model under the destination key of this model at the end of training.
|
DeepWaterParameters.ProblemType |
problem_type
The activation function (non-linearity) to be used by the neurons in the hidden layers.
|
boolean |
quiet_mode
Enable quiet mode for less output to standard output.
|
double |
regression_stop
The stopping criteria in terms of regression error (MSE) on the training
data scoring dataset.
|
boolean |
replicate_training_data
Replicate the entire training dataset onto every node for faster training on small datasets.
|
double |
score_duty_cycle
Maximum fraction of wall clock time spent on model scoring on training and validation samples,
and on diagnostics such as computation of feature importances (i.e., not on training).
|
double |
score_interval
The minimum time (in seconds) to elapse between model scoring.
|
long |
score_training_samples
The number of training dataset points to be used for scoring.
|
long |
score_validation_samples
The number of validation dataset points to be used for scoring.
|
long |
seed
The random seed controls sampling and initialization.
|
boolean |
shuffle_training_data
Enable shuffling of training data (on each node).
|
boolean |
single_node_mode
Run on a single node for fine-tuning of model parameters.
|
boolean |
sparse |
boolean |
standardize |
double |
target_ratio_comm_to_comp |
long |
train_samples_per_iteration
The number of training data rows to be processed per iteration.
|
boolean |
variable_importances
Whether to compute variable importances for input features.
|
categorical_encoding, checkpoint, distribution, fold_assignment, fold_column, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
DeepWaterV3.DeepWaterParametersV3() |
append_field_arrays, fields, fillFromImpl, fillImpl, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static java.lang.String[] fields
@API(level=critical, direction=INOUT, values={"auto","image","dataset"}, help="Problem type, auto-detected by default. If set to image, the H2OFrame must contain a string column containing the path (URI or URL) to the images in the first column. If set to text, the H2OFrame must contain a string column containing the text in the first column. If set to dataset, Deep Water behaves just like any other H2O Model and builds a model on the provided H2OFrame (non-String columns).") public DeepWaterParameters.ProblemType problem_type
@API(level=critical, direction=INOUT, gridable=true, values={"Rectifier","Tanh"}, help="Activation function. Only used if no user-defined network architecture file is provided, and only for problem_type=dataset.") public DeepWaterParameters.Activation activation
@API(level=critical, direction=INOUT, gridable=true, help="Hidden layer sizes (e.g. [200, 200]). Only used if no user-defined network architecture file is provided, and only for problem_type=dataset.") public int[] hidden
@API(level=secondary, direction=INOUT, gridable=true, help="Input layer dropout ratio (can improve generalization, try 0.1 or 0.2).") public double input_dropout_ratio
@API(level=secondary, direction=INOUT, gridable=true, help="Hidden layer dropout ratios (can improve generalization), specify one value per hidden layer, defaults to 0.5.") public double[] hidden_dropout_ratios
@API(level=secondary, direction=INOUT, gridable=false, help="[Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs.") public int max_confusion_matrix_size
@API(level=expert, direction=INOUT, gridable=true, help="Sparse data handling (more efficient for data with lots of 0 values).") public boolean sparse
@API(level=secondary, direction=INOUT, gridable=false, help="Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable).") public int max_hit_ratio_k
@API(level=critical, direction=INOUT, gridable=true, help="How many times the dataset should be iterated (streamed), can be fractional.") public double epochs
@API(level=secondary, direction=INOUT, gridable=true, help="Number of training samples (globally) per MapReduce iteration. Special values are 0: one epoch, -1: all available data (e.g., replicated training data), -2: automatic.") public long train_samples_per_iteration
@API(level=expert, direction=INOUT, gridable=true, help="Target ratio of communication overhead to computation. Only for multi-node operation and train_samples_per_iteration = -2 (auto-tuning).") public double target_ratio_comm_to_comp
@API(level=expert, direction=INOUT, gridable=true, help="Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded.") public long seed
@API(level=expert, direction=INOUT, gridable=true, help="Learning rate (higher => less stable, lower => slower convergence).") public double learning_rate
@API(level=expert, direction=INOUT, gridable=true, help="Learning rate annealing: rate / (1 + rate_annealing * samples).") public double learning_rate_annealing
@API(level=expert, direction=INOUT, gridable=true, help="Initial momentum at the beginning of training (try 0.5).") public double momentum_start
@API(level=expert, direction=INOUT, gridable=true, help="Number of training samples for which momentum increases.") public double momentum_ramp
@API(level=expert, direction=INOUT, gridable=true, help="Final momentum after the ramp is over (try 0.99).") public double momentum_stable
@API(level=secondary, direction=INOUT, gridable=true, help="Shortest time interval (in seconds) between model scoring.") public double score_interval
@API(level=secondary, direction=INOUT, gridable=true, help="Number of training set samples for scoring (0 for all).") public long score_training_samples
@API(level=secondary, direction=INOUT, gridable=true, help="Number of validation set samples for scoring (0 for all).") public long score_validation_samples
@API(level=secondary, direction=INOUT, gridable=true, help="Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring).") public double score_duty_cycle
@API(level=expert, direction=INOUT, gridable=true, help="Stopping criterion for classification error fraction on training data (-1 to disable).") public double classification_stop
@API(level=expert, direction=INOUT, gridable=true, help="Stopping criterion for regression error (MSE) on training data (-1 to disable).") public double regression_stop
@API(level=expert, direction=INOUT, gridable=true, help="Enable quiet mode for less output to standard output.") public boolean quiet_mode
@API(level=expert, direction=INOUT, gridable=true, help="If enabled, override the final model with the best model found during training.") public boolean overwrite_with_best_model
@API(level=secondary, direction=INOUT, help="Auto-Encoder.") public boolean autoencoder
@API(level=expert, direction=INOUT, help="Enable diagnostics for hidden layers.") public boolean diagnostics
@API(level=critical, direction=INOUT, gridable=true, help="Compute variable importances for input features (Gedeon method) - can be slow for large networks.") public boolean variable_importances
@API(level=secondary, direction=INOUT, gridable=true, help="Replicate the entire training dataset onto every node for faster training on small datasets.") public boolean replicate_training_data
@API(level=expert, direction=INOUT, gridable=true, help="Run on a single node for fine-tuning of model parameters.") public boolean single_node_mode
@API(level=expert, direction=INOUT, gridable=true, help="Enable global shuffling of training data.") public boolean shuffle_training_data
@API(level=expert, direction=INOUT, gridable=true, help="Mini-batch size (smaller leads to better fit, larger can speed up and generalize better).") public int mini_batch_size
@API(level=expert, direction=INOUT, gridable=true, help="Clip gradients once their absolute value is larger than this value.") public double clip_gradient
@API(level=critical, direction=INOUT, gridable=true, values={"auto","user","lenet","alexnet","vgg","googlenet","inception_bn","resnet"}, help="Network architecture.") public DeepWaterParameters.Network network
@API(level=secondary, direction=INOUT, gridable=true, values={"mxnet","caffe","tensorflow"}, help="Deep Learning Backend.") public DeepWaterParameters.Backend backend
@API(level=secondary, direction=INOUT, gridable=true, help="Width and height of image.") public int[] image_shape
@API(level=secondary, direction=INOUT, gridable=true, help="Number of (color) channels.") public int channels
@API(level=expert, direction=INOUT, help="Whether to use a GPU (if available).") public boolean gpu
@API(level=expert, direction=INOUT, help="Device IDs (which GPUs to use).") public int[] device_id
@API(level=expert, direction=INOUT, help="Whether to cache the data in memory (automatically disabled if data size is too large).") public boolean cache_data
@API(level=secondary, direction=INOUT, help="Path of file containing network definition (graph, architecture).") public java.lang.String network_definition_file
@API(level=secondary, direction=INOUT, help="Path of file containing network (initial) parameters (weights, biases).") public java.lang.String network_parameters_file
@API(level=secondary, direction=INOUT, help="Path of file containing the mean image data for data normalization.") public java.lang.String mean_image_file
@API(level=secondary, direction=INOUT, help="Path (prefix) where to export the native model parameters after every iteration.") public java.lang.String export_native_parameters_prefix
@API(level=secondary, direction=INOUT, gridable=true, help="If enabled, automatically standardize the data. If disabled, the user must provide properly scaled input data.") public boolean standardize
@API(level=secondary, direction=INOUT, gridable=true, help="Balance training data class counts via over/under-sampling (for imbalanced data).") public boolean balance_classes
@API(level=expert, direction=INOUT, gridable=true, help="Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.") public float[] class_sampling_factors
@API(level=expert, direction=INOUT, gridable=false, help="Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes.") public float max_after_balance_size