public static final class KMeansV3.KMeansParametersV3 extends water.api.schemas3.ClusteringModelParametersSchemaV3<KMeansModel.KMeansParameters,KMeansV3.KMeansParametersV3>
Modifier and Type | Field and Description |
---|---|
boolean |
estimate_k |
static java.lang.String[] |
fields |
KMeans.Initialization |
init |
int |
max_iterations |
long |
seed |
boolean |
standardize |
water.api.schemas3.KeyV3.FrameKeyV3 |
user_points |
categorical_encoding, checkpoint, distribution, fold_assignment, fold_column, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
KMeansV3.KMeansParametersV3() |
append_field_arrays, fields, fillFromImpl, fillImpl, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static java.lang.String[] fields
@API(help="This option allows you to specify a dataframe, where each row represents an initial cluster center. The user-specified points must have the same number of columns as the training observations. The number of rows must equal the number of clusters", required=false, level=expert) public water.api.schemas3.KeyV3.FrameKeyV3 user_points
@API(help="Maximum training iterations (if estimate_k is enabled, then this is for each inner Lloyds iteration)", gridable=true) public int max_iterations
@API(help="Standardize columns before computing distances", level=critical, gridable=true) public boolean standardize
@API(help="RNG Seed", level=secondary, gridable=true) public long seed
@API(help="Initialization mode", values={"Random","PlusPlus","Furthest","User"}, gridable=true) public KMeans.Initialization init
@API(help="Whether to estimate the number of clusters (<=k) iteratively and deterministically.", level=critical, gridable=true) public boolean estimate_k