public abstract static class ClusteringModel.ClusteringParameters extends Model.Parameters
Model.Parameters.CategoricalEncodingScheme, Model.Parameters.FoldAssignmentScheme
Modifier and Type | Field and Description |
---|---|
int |
_k
Clustering models must specify the number of clusters to generate
|
_auto_rebalance, _balance_classes, _categorical_encoding, _checkpoint, _class_sampling_factors, _distribution, _fold_assignment, _fold_column, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_predictions, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
ClusteringModel.ClusteringParameters() |
algoName, checksum_impl, checksum, defaultDropConsCols, defaultStoppingTolerance, fullName, getOrMakeRealSeed, hasCheckpoint, javaName, missingColumnsType, progressUnits, read_lock_frames, read_unlock_frames, setTrain, train, valid
asBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonString, write, writeExternal, writeJSON