java.lang.String[] _names
java.lang.String[][] _domains
java.lang.String _offsetColumn
GenMunger.Step<T>[] _steps
ModelCategory _category
java.lang.String _uuid
boolean _supervised
int _nfeatures
int _nclasses
boolean _balanceClasses
double _defaultThreshold
double[] _priorClassDistrib
double[] _modelClassDistrib
java.lang.String _problem_type
int _mini_batch_size
int _height
int _width
int _channels
int _nums
int _cats
int[] _catOffsets
double[] _normMul
double[] _normSub
double[] _normRespMul
double[] _normRespSub
boolean _useAllFactorLevels
deepwater.backends.BackendTrain _backend
deepwater.backends.BackendModel _model
deepwater.datasets.ImageDataSet _imageDataSet
deepwater.backends.RuntimeOptions _opts
deepwater.backends.BackendParams<T> _backendParams
DistributionFamily _family
double _init_f
int _ncolA
int _ncolX
int _ncolY
int _nrowY
double[][] _archetypes
int[] _numLevels
int[] _permutation
GlrmLoss[] _losses
GlrmRegularizer _regx
double _gammax
GlrmInitialization _init
int _ncats
int _nnums
double[] _normSub
double[] _normMul
java.lang.Number _mojo_version
int _ntree_groups
_ntree_groups
is the number of trees requested by the user. For
binomial case or regression this is also the total number of trees
trained; however in multinomial case each requested "tree" is actually
represented as a group of trees, with _ntrees_per_group
trees
in each group. Each of these individual trees assesses the likelihood
that a given observation belongs to class A, B, C, etc. of a
multiclass response.int _ntrees_per_group
byte[][] _compressed_trees
byte[]
array. The
trees are logically grouped into a rectangular grid of dimensions
SharedTreeMojoModel._ntree_groups
x SharedTreeMojoModel._ntrees_per_group
, however physically
they are stored as 1-dimensional list, and an [i, j]
logical
tree is mapped to the index SharedTreeMojoModel.treeIndex(int, int)
.byte[][] _compressed_trees_aux
byte[]
array.double[] _calib_glm_beta
GenModel m
java.util.HashMap<K,V> modelColumnNameToIndexMap
java.util.HashMap<K,V> domainMap
boolean convertUnknownCategoricalLevelsToNa
boolean convertInvalidNumbersToNa
java.util.concurrent.ConcurrentHashMap<K,V> unknownCategoricalLevelsSeenPerColumn
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA (this will happen with GLM, for example, if one of the input values for a new data point is NA). If they are valid numeric values, then they will sum up to 1.0.
double[] calibratedClassProbabilities
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA. If they are valid numeric values, then they will sum up to 1.0.