java.lang.String[] _names
java.lang.String[][] _domains
java.lang.String _responseColumn
java.lang.String _offsetColumn
GenMunger.Step<T>[] _steps
java.lang.String[] _names
java.lang.String[] _types
java.lang.String[] _outNames
java.util.HashMap<K,V> _params
java.lang.String _h2oVersion
ModelCategory _category
java.lang.String _uuid
boolean _supervised
int _nfeatures
int _nclasses
boolean _balanceClasses
double _defaultThreshold
double[] _priorClassDistrib
double[] _modelClassDistrib
double _mojo_version
int _mini_batch_size
int _nums
int _cats
int[] _catoffsets
double[] _normmul
double[] _normsub
double[] _normrespmul
double[] _normrespsub
boolean _use_all_factor_levels
java.lang.String _activation
java.lang.String[] _allActivations
boolean _imputeMeans
int[] _units
double[] _all_drop_out_ratios
DeeplearningMojoModel.StoreWeightsBias[] _weightsAndBias
int[] _catNAFill
int _numLayers
DistributionFamily _family
double[] _numsA
int[] _catsA
float[] _wValues
double[] _bValues
java.lang.String _problem_type
int _mini_batch_size
int _height
int _width
int _channels
int _nums
int _cats
int[] _catOffsets
double[] _normMul
double[] _normSub
double[] _normRespMul
double[] _normRespSub
boolean _useAllFactorLevels
deepwater.backends.BackendTrain _backend
deepwater.backends.BackendModel _model
deepwater.datasets.ImageDataSet _imageDataSet
deepwater.backends.RuntimeOptions _opts
deepwater.backends.BackendParams<T> _backendParams
boolean _binomial_double_trees
MojoModel _metaLearner
hex.genmodel.algos.ensemble.StackedEnsembleMojoModel.StackedEnsembleMojoSubModel[] _baseModels
int _baseModelNum
DistributionFamily _family
double _init_f
java.lang.String _link
double _tweedieLinkPower
hex.genmodel.algos.glm.GlmMojoModel.Function1 _linkFn
boolean _binomial
int P
int noff
int P
int noff
int lastClass
int[] icptIndices
int _ncolA
int _ncolX
int _ncolY
int _nrowY
double[][] _archetypes
double[][] _archetypes_raw
int[] _numLevels
int[] _catOffsets
int[] _permutation
GlrmLoss[] _losses
GlrmRegularizer _regx
double _gammax
GlrmInitialization _init
int _ncats
int _nnums
double[] _normSub
double[] _normMul
long _seed
boolean _transposed
boolean _reverse_transform
double _accuracyEps
int _iterNumber
long _rcnt
int _numAlphaFactors
double[] _allAlphas
int _min_path_length
int _max_path_length
boolean _standardize
double[][] _centers
double[] _means
double[] _mults
int[] _modes
MojoModel _mainModel
int[] _sourceRowIndices
int[] _targetMainModelRowIndices
int _generatedColumnCount
hex.genmodel.algos.pipeline.MojoPipeline.PipelineSubModel[] _models
boolean meanImputation
double[] weights
double[] means
double interceptor
double defaultThreshold
double threshold
ScoreTree _scoreTree
int _ntree_groups
_ntree_groups is the number of trees requested by the user. For
binomial case or regression this is also the total number of trees
trained; however in multinomial case each requested "tree" is actually
represented as a group of trees, with _ntrees_per_group trees
in each group. Each of these individual trees assesses the likelihood
that a given observation belongs to class A, B, C, etc. of a
multiclass response.int _ntrees_per_group
byte[][] _compressed_trees
byte[] array. The
trees are logically grouped into a rectangular grid of dimensions
SharedTreeMojoModel._ntree_groups x SharedTreeMojoModel._ntrees_per_group, however physically
they are stored as 1-dimensional list, and an [i, j] logical
tree is mapped to the index SharedTreeMojoModel.treeIndex(int, int).byte[][] _compressed_trees_aux
byte[] array.double[] _calib_glm_beta
int _vecSize
java.util.HashMap<K,V> _embeddings
GenModel m
java.util.HashMap<K,V> modelColumnNameToIndexMap
java.util.HashMap<K,V> domainMap
EasyPredictModelWrapper.ErrorConsumer errorConsumer
boolean convertUnknownCategoricalLevelsToNa
boolean convertInvalidNumbersToNa
boolean useExtendedOutput
boolean enableLeafAssignment
boolean enableGLRMReconstruct
boolean enableStagedProbabilities
java.util.Map<K,V> dataTransformationErrorsCountPerColumn
java.util.Map<K,V> unknownCategoricalsPerColumn
java.lang.String columnName
java.lang.String unknownLevel
double score
double normalizedScore
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
double[] original
double[] reconstructed
RowData reconstructedRowData
double mse
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA (this will happen with GLM, for example, if one of the input values for a new data point is NA). If they are valid numeric values, then they will sum up to 1.0.
double[] calibratedClassProbabilities
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
int cluster
double[] distances
double[] dimensions
double[] reconstructed
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA. If they are valid numeric values, then they will sum up to 1.0.
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA. If they are valid numeric values, then they will sum up to 1.0.
double value
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
java.util.HashMap<K,V> wordEmbeddings