export_checkpoints_dir

  • Available in: GBM, DRF, Deep Learning, GLM, PCA, GLRM, Naïve-Bayes, K-Means, Word2Vec, Stacked Ensembles, XGBoost, Aggregator, CoxPH, Isolation Forest, AutoML
  • Hyperparameter: no

Description

This option is used to automatically export generated models to a specified directory.

Example

  • r
  • python
library(h2o)
h2o.init()

# import the airlines dataset
airlines = h2o.importFile("http://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip", destination_frame="air.hex")

# set the predictors and response
predictors <- c("DayofMonth", "DayOfWeek")
response <- "IsDepDelayed"

# set hyperparameters to build one model with 5 trees and one with 10 trees
hyper_parameters <- list(ntrees = c(5,10))

# specify the export checkpoints directory
checkpoints_dir <- tempfile()

# perform grid search using GBM
gbm_grid <- h2o.grid("gbm",
                     x=predictors,
                     y=response,
                     training_frame=airlines,
                     distribution="bernoulli",
                     stopping_rounds=3,
                     stopping_metric="AUTO",
                     stopping_tolerance=1e-2,
                     learn_rate=0.1,
                     max_depth=3,
                     hyper_params=hyper_parameters,
                     export_checkpoints_dir=checkpoints_dir,
                     seed=1234)

# retrieve the number of files in the exported checkpoints directory
num_files <- length(checkpoints_dir)
num_files
[1] 1