theta
¶
- Available in: GLM
- Hyperparameter: no
Description¶
In GLM, negative binomial regression is a generalization of Poisson regression that loosens the restrictive assumption that the variance is equal to the mean. Instead, the variance of negative binomial regression is a function of its mean and parameter θ, the dispersion parameter.
The theta
parameter allows you to specify this dispersion value. This option must be > 0 and defaults to 1e-10. In addition, this option can only be used when family=negativebinomial
.
Refer to the Negative Binomial Models topic for more inforamtion on how the theta
value is used in negative binomial regression problems.
Example¶
- r
- python
library(h2o)
h2o.init()
# Import the Swedish motor insurance dataset
h2o_df = h2o.importFile("http://h2o-public-test-data.s3.amazonaws.com/smalldata/glm_test/Motor_insurance_sweden.txt")
# Set the predictor names and the response column
predictors <- c["Payment", "Insured", "Kilometres", "Zone", "Bonus", "Make"]
response <- "Claims"
# Train the model
negativebinomial.fit <- h2o.glm(x=predictors,
y=response,
training_frame=h2o_df,
family="negativebinomial",
link="identity",
theta=0.5)