public class TargetEncoderMojoModel extends MojoModel
| Modifier and Type | Class and Description |
|---|---|
static class |
TargetEncoderMojoModel.SortByKeyAssociatedIndex<K extends java.lang.String,V> |
| Modifier and Type | Field and Description |
|---|---|
double |
_inflectionPoint |
double |
_priorMean |
double |
_smoothing |
EncodingMaps |
_targetEncodingMap |
java.util.Map<java.lang.String,java.lang.Integer> |
_teColumnNameToIdx |
java.util.Map<java.lang.String,java.lang.Integer> |
_teColumnNameToMissingValuesPresence |
boolean |
_withBlending |
_algoName, _balanceClasses, _category, _defaultThreshold, _h2oVersion, _modelAttributes, _modelClassDistrib, _modelDescriptor, _mojo_version, _nclasses, _nfeatures, _priorClassDistrib, _supervised, _uuid_domains, _names, _offsetColumn, _responseColumn| Constructor and Description |
|---|
TargetEncoderMojoModel(java.lang.String[] columns,
java.lang.String[][] domains,
java.lang.String responseName) |
| Modifier and Type | Method and Description |
|---|---|
static double |
computeBlendedEncoding(double lambda,
double posteriorMean,
double priorMean) |
static double |
computeLambda(int nrows,
double inflectionPoint,
double smoothing) |
double[] |
score0(double[] row,
double[] preds)
Subclasses implement the scoring logic.
|
getModelCategory, getUUID, isSupervised, load, load, nclasses, nfeaturesbitSetContains, bitSetIsInRange, calibrateClassProbabilities, convertDouble2Float, correctProbabilities, createAuxKey, features, GBM_rescale, getCategoricalEncoding, getColIdx, getDomainValues, getDomainValues, getDomainValues, getHeader, getModelCategories, getNames, getNumClasses, getNumCols, getNumResponseClasses, getOffsetName, getOrigDomainValues, getOrigNames, getOrigNumCols, getPrediction, getPredsSize, getPredsSize, getResponseIdx, getResponseName, GLM_identityInv, GLM_inverseInv, GLM_logInv, GLM_logitInv, GLM_ologitInv, GLM_tweedieInv, img2pixels, isAutoEncoder, isClassifier, KMeans_closest, KMeans_distance, KMeans_distance, KMeans_distances, Kmeans_preprocessData, Kmeans_preprocessData, KMeans_simplex, log_rescale, mapEnum, nCatFeatures, score0, setCats, setCats, setInput, setInputpublic EncodingMaps _targetEncodingMap
public java.util.Map<java.lang.String,java.lang.Integer> _teColumnNameToIdx
public java.util.Map<java.lang.String,java.lang.Integer> _teColumnNameToMissingValuesPresence
public boolean _withBlending
public double _inflectionPoint
public double _smoothing
public double _priorMean
public TargetEncoderMojoModel(java.lang.String[] columns,
java.lang.String[][] domains,
java.lang.String responseName)
public static double computeLambda(int nrows,
double inflectionPoint,
double smoothing)
public static double computeBlendedEncoding(double lambda,
double posteriorMean,
double priorMean)
public double[] score0(double[] row,
double[] preds)
GenModel