public static class KMeans2.KMeans2Model extends Model implements Job.Progress
Model.ModelCategory
Modifier and Type | Field and Description |
---|---|
Key |
_clustersKey |
double |
between_cluster_SS |
double[] |
between_cluster_variances |
double[][] |
centers |
static DocGen.FieldDoc[] |
DOC_FIELDS |
int |
iterations |
int |
k |
int |
max_iter |
boolean |
normalized |
long[] |
size |
double |
total_SS |
double |
total_within_SS |
double[] |
within_cluster_variances |
_dataKey, _domains, _modelClassDist, _names, _priorClassDist, training_duration_in_ms, training_start_time
Constructor and Description |
---|
KMeans2.KMeans2Model(KMeans2 params,
Key selfKey,
Key dataKey,
java.lang.String[] names,
java.lang.String[][] domains) |
Modifier and Type | Method and Description |
---|---|
Futures |
delete_impl(Futures fs)
Remove any Model internal Keys
|
double |
mse()
Returns mse for validation set.
|
float |
progress() |
protected float[] |
score0(Chunk[] chunks,
int rowInChunk,
double[] tmp,
float[] preds)
Bulk scoring API for one row.
|
protected float[] |
score0(double[] data,
float[] preds)
Subclasses implement the scoring logic.
|
adapt, calcError, classNames, cm, errStr, get_params, getDomainMapping, getDomainMapping, getModelCategory, getUniqueId, isClassifier, job, missingColumnsType, nclasses, nfeatures, responseName, score, score, score, score, score, score, setModelClassDistribution, start_training, start_training, stop_training, testJavaScoring, toJava, toJava, toJavaDefaultMaxIters, toJavaInit, toJavaInit, toJavaPredictBody, toJavaSuper, varimp
delete_and_lock, delete, delete, delete, delete, is_unlocked, is_wlocked, read_lock, read_lock, unlock_all, unlock, update, write_lock
clone, frozenType, init, newInstance, read, toDocField, write, writeJSON, writeJSONFields
public static DocGen.FieldDoc[] DOC_FIELDS
@Request.API(help="Cluster centers, always denormalized") public double[][] centers
@Request.API(help="Sum of within cluster sum of squares") public double total_within_SS
@Request.API(help="Between cluster sum of square distances") public double between_cluster_SS
@Request.API(help="Total Sum of squares = total_within_SS + betwen_cluster_SS") public double total_SS
@Request.API(help="Number of clusters") public int k
@Request.API(help="Numbers of observations in each cluster.") public long[] size
@Request.API(help="Whether data was normalized") public boolean normalized
@Request.API(help="Maximum number of iterations before stopping") public int max_iter
@Request.API(help="Iterations the algorithm ran") public int iterations
@Request.API(help="Within cluster sum of squares per cluster") public double[] within_cluster_variances
@Request.API(help="Between Cluster square distances per cluster") public double[] between_cluster_variances
@Request.API(help="The row-by-row cluster assignments") public final Key _clustersKey
public double mse()
Model
public float progress()
progress
in interface Job.Progress
protected float[] score0(Chunk[] chunks, int rowInChunk, double[] tmp, float[] preds)
Model
protected float[] score0(double[] data, float[] preds)
Model
public Futures delete_impl(Futures fs)
delete_impl
in class Model