Class | Description |
---|---|
BaseStatsTask |
Class for storing and updating basic column stats (max, min, mean, sigma).
|
ColSummaryTask | |
ConfusionMatrix | |
Covariance |
Calculate the covariance and correlation of two variables
|
Covariance.COV_Task | |
CreateFrame |
Create a Frame from scratch
If randomize = true, then the frame is filled with Random values.
|
DGLM | |
DGLM.FamilyIced |
passthrough class around family that properly supports icing
|
DGLM.GLMJob | |
DGLM.GLMModel | |
DGLM.GLMModel.GLMValidationTask | |
DGLM.GLMParams | |
DGLM.GLMValidation | |
DGLM.GLMValidationFunc | |
DGLM.GramMatrixFunc | |
DGLM.LambdaMax | |
DGLM.LambdaMaxFunc | |
DGLM.LinkIced |
passthrough class around Link that supports Icing
|
DLSM |
Distributed least squares solvers
|
DLSM.ADMMSolver | |
DLSM.GeneralizedGradientSolver |
Generalized gradient solver for solving LSM problem with combination of L1 and L2 penalty.
|
DLSM.LSMSolver | |
FrameSplitter |
Frame splitter function to divide given frame into
multiple partitions based on given ratios.
|
FrameTask<T extends FrameTask<T>> | |
FrameTask.DataInfo | |
GLMGrid | |
GLMGrid.GLMModels | |
GridSearch | |
GridSearch.GridSearchProgress | |
Histogram | |
Histogram.BinningTask | |
Histogram.Bins | |
Histogram.OutlineTask | |
KMeans |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf http://www.youtube.com/watch?v=cigXAxV3XcY |
KMeans.Lloyds | |
KMeans.Sampler | |
KMeans.Sqr | |
KMeans2 |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf http://www.youtube.com/watch?v=cigXAxV3XcY |
KMeans2.KMeans2Model | |
KMeans2.KMeans2ModelView | |
KMeans2.KMeans2Progress | |
KMeans2.Lloyds | |
KMeans2.Sampler | |
KMeans2.SumSqr | |
KMeansModel | |
KMeansModel.KMeansApply | |
KMeansModel.KMeansScore | |
KMeansShared | |
Layer |
Neural network layer.
|
Layer.Input | |
Layer.Linear |
Linear output layer is used for regression
Rows with missing values in the response column will be ignored
|
Layer.Maxout | |
Layer.MaxoutDropout | |
Layer.Output | |
Layer.Rectifier | |
Layer.RectifierDropout | |
Layer.RectifierPrime | |
Layer.Softmax |
Softmax output layer is used for classification
Rows with missing values in the response column will be ignored
|
Layer.Tanh | |
Layer.TanhDropout | |
Layer.TanhPrime |
Apply tanh to the weights' transpose.
|
Layer.VecLinear | |
Layer.VecsInput | |
Layer.VecSoftmax | |
LinearRegression | |
LinearRegression.CalcRegressionTask | |
LinearRegression.CalcSquareErrorsTasks | |
LinearRegression.CalcSumsTask | |
LinearRegression.LRResult | |
LR2 | |
LR2.CalcRegressionTask | |
LR2.CalcSquareErrorsTasks | |
LR2.CalcSumsTask | |
NeuralNet |
Neural network.
|
NeuralNet.Errors | |
NeuralNet.NeuralNetModel | |
NeuralNet.NeuralNetScore | |
NewRowVecTask<T extends Iced> | |
NewRowVecTask.DataFrame |
Struct to keep info about our data.
|
NewRowVecTask.RowFunc<T extends Iced> | |
NodeShuffle |
Shuffle the rows of some dataset, such that the natural placement of the
resulting ValueArray onto Nodes results in some good property.
|
NOPTask | |
OneHot | |
ParamsSearch |
Looks for parameters on a set of objects and perform random search.
|
Quantiles |
Quantile of a column.
|
Quantiles.BinTask2 | |
ReBalance |
Rebalance a Frame
|
RowTask<T extends Freezable> | |
RowTask.Row<T extends Freezable> | |
RowTask.RowFunction<T extends Iced> | |
RowVecTask | |
RowVecTask.Sampling | |
ScoreTask | |
ShuffleTask |
Simple shuffle task based on Fisher/Yates algo.
|
Summary | |
Summary.ColSummary | |
Summary2 |
Summary of a column.
|
Summary2.BasicStat | |
Summary2.PrePass | |
Summary2.SummaryPerRow | |
Summary2.SummaryTask2 | |
Trainer |
Trains a neural network.
|
Trainer.Base | |
Trainer.Direct |
Trains NN on current thread.
|
Trainer.MapReduce |
Distributed trainer.
|
Trainer.OpenCL |
GPU based trainer.
|
Trainer.Threaded |
Runs several trainers in parallel on the same weights, using threads.
|
VarImp | |
VarImp.VarImpMDA |
Variable importance measured as mean decrease in accuracy.
|
VarImp.VarImpRI |
Variable importance measured as relative influence.
|
Enum | Description |
---|---|
ConfusionMatrix.ErrMetric | |
DGLM.CaseMode | |
DGLM.Family | |
DGLM.GLMModel.Status | |
DGLM.Link | |
DLSM.LSMSolverType | |
KMeans.Initialization | |
NeuralNet.Activation |
Activation functions
|
NeuralNet.ExecutionMode | |
NeuralNet.InitialWeightDistribution | |
NeuralNet.Loss |
Loss functions
CrossEntropy is recommended
|
RowVecTask.DataPreprocessing |
Exception | Description |
---|---|
DGLM.GLMException | |
DLSM.ADMMSolver.NonSPDMatrixException | |
DLSM.LSMSolver.LSMSolverException |
Annotation Type | Description |
---|---|
ParamsSearch.Ignore | |
ParamsSearch.Info |