public abstract class Layer extends Iced
Modifier and Type | Class and Description |
---|---|
class |
Layer.Dropout
Helper class for dropout, only to be used from within a Layer
|
static class |
Layer.Input |
static class |
Layer.Linear
Linear output layer is used for regression
Rows with missing values in the response column will be ignored
|
static class |
Layer.Maxout |
static class |
Layer.MaxoutDropout |
static class |
Layer.Output |
static class |
Layer.Rectifier |
static class |
Layer.RectifierDropout |
static class |
Layer.RectifierPrime |
static class |
Layer.Softmax
Softmax output layer is used for classification
Rows with missing values in the response column will be ignored
|
static class |
Layer.Tanh |
static class |
Layer.TanhDropout |
static class |
Layer.TanhPrime
Apply tanh to the weights' transpose.
|
static class |
Layer.VecLinear |
static class |
Layer.VecsInput |
static class |
Layer.VecSoftmax |
Modifier and Type | Field and Description |
---|---|
protected float[] |
_a |
protected float[] |
_b |
protected float[] |
_bm |
protected float[] |
_e |
protected Layer |
_previous |
protected float[] |
_w |
protected float[] |
_wm |
static DocGen.FieldDoc[] |
DOC_FIELDS |
static float |
missing_float_value |
static int |
missing_int_value
We need a way to encode a missing value in the neural net forward/back-propagation scheme.
|
NeuralNet |
params |
int |
units |
Constructor and Description |
---|
Layer() |
Modifier and Type | Method and Description |
---|---|
protected abstract void |
bprop() |
Layer |
clone() |
void |
close() |
protected abstract void |
fprop(long seed,
boolean training) |
void |
init(Layer[] ls,
int index,
boolean weights) |
void |
init(Layer[] ls,
int index,
NeuralNet p) |
float |
momentum(long n) |
float |
rate(long n) |
static void |
shareWeights(Layer[] src,
Layer[] dst) |
static void |
shareWeights(Layer src,
Layer dst) |
AutoBuffer |
writeJSON(AutoBuffer bb) |
frozenType, init, newInstance, read, toDocField, write, writeJSONFields
public static DocGen.FieldDoc[] DOC_FIELDS
@Request.API(help="Number of neurons") public int units
public NeuralNet params
protected transient float[] _a
protected transient float[] _e
protected transient float[] _w
protected transient float[] _wm
protected transient float[] _b
protected transient float[] _bm
protected transient Layer _previous
public static final int missing_int_value
public static final float missing_float_value
public void init(Layer[] ls, int index, boolean weights)
public void close()
protected abstract void fprop(long seed, boolean training)
protected abstract void bprop()
public float rate(long n)
public float momentum(long n)
public AutoBuffer writeJSON(AutoBuffer bb)