public static class ModelMetricsRegression.MetricBuilderRegression<T extends ModelMetricsRegression.MetricBuilderRegression<T>> extends ModelMetricsSupervised.MetricBuilderSupervised<T>
_domain, _nclasses| Constructor and Description |
|---|
ModelMetricsRegression.MetricBuilderRegression() |
ModelMetricsRegression.MetricBuilderRegression(Distribution dist) |
| Modifier and Type | Method and Description |
|---|---|
ModelMetrics |
makeModelMetrics(Model m,
Frame f,
Frame adaptedFrame,
Frame preds)
Create a model metrics object
|
double[] |
perRow(double[] ds,
float[] yact,
double w,
double o,
Model m) |
double[] |
perRow(double[] ds,
float[] yact,
Model m) |
void |
reduce(T mb) |
postGlobal, weightedSigmaasBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonString, write, writeExternal, writeJSONpublic ModelMetricsRegression.MetricBuilderRegression()
public ModelMetricsRegression.MetricBuilderRegression(Distribution dist)
public double[] perRow(double[] ds,
float[] yact,
Model m)
perRow in class ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsRegression.MetricBuilderRegression<T>>public double[] perRow(double[] ds,
float[] yact,
double w,
double o,
Model m)
perRow in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>public void reduce(T mb)
reduce in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>public ModelMetrics makeModelMetrics(Model m, Frame f, Frame adaptedFrame, Frame preds)
ModelMetricsSupervised.MetricBuilderSupervisedmakeModelMetrics in class ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsRegression.MetricBuilderRegression<T>>m - Modelf - FrameadaptedFrame - Adapted Framepreds - Optional predictions (can be null), only used to compute Gains/Lift table for binomial problems @return