public static class ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsSupervised.MetricBuilderSupervised<T>> extends ModelMetrics.MetricBuilder<T>
| Modifier and Type | Field and Description |
|---|---|
protected java.lang.String[] |
_domain |
protected int |
_nclasses |
| Constructor and Description |
|---|
ModelMetricsSupervised.MetricBuilderSupervised(int nclasses,
java.lang.String[] domain) |
| Modifier and Type | Method and Description |
|---|---|
ModelMetrics |
makeModelMetrics(Model m,
Frame f,
Frame adaptedFrame,
Frame preds)
Create a model metrics object
|
double[] |
perRow(double[] ds,
float[] yact,
Model m) |
perRow, postGlobal, reduce, weightedSigmaasBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonString, write, writeExternal, writeJSONprotected final java.lang.String[] _domain
protected final int _nclasses
public ModelMetricsSupervised.MetricBuilderSupervised(int nclasses,
java.lang.String[] domain)
public double[] perRow(double[] ds,
float[] yact,
Model m)
perRow in class ModelMetrics.MetricBuilder<T extends ModelMetricsSupervised.MetricBuilderSupervised<T>>public ModelMetrics makeModelMetrics(Model m, Frame f, Frame adaptedFrame, Frame preds)
makeModelMetrics in class ModelMetrics.MetricBuilder<T extends ModelMetricsSupervised.MetricBuilderSupervised<T>>m - Modelf - FrameadaptedFrame - preds - Optional predictions (can be null), only used to compute Gains/Lift table for binomial problems @return