blending_frame
¶
- Available in: Stacked Ensembles, AutoML
- Hyperparameter: no
Description¶
H2O’s Stacked Ensemble method is supervised ensemble machine learning algorithm that finds the optimal combination of a collection of prediction algorithms using a process called stacking (or Super Learning). The algorithm that learns the optimal combination of the base learners is called the metalearning algorithm or metalearner.
The optional blending_frame
parameter is used to specify a frame to be used for computing the predictions that serve as the training frame for the metalearner. If provided, this triggers blending mode. Blending mode is faster than cross-validating the base learners (though these ensembles may not perform as well as the Super Learner ensemble). In addition, a blending frame adds the ability to train stacked ensembles on time-series data, where holdout data is “future” data compared to “past” data in training set.
Example¶
library(h2o)
h2o.init()
# import the higgs_train_5k train and test datasets
higgs <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/testng/higgs_train_5k.csv")
# split the dataset into training and blending frames
higgs.splits <- h2o.splitFrame(data = higgs, ratios = .8, seed = 1234)
train <- higgs.splits[[1]]
blend <- higgs.splits[[2]]
# Identify predictors and response
y <- "response"
x <- setdiff(names(train), y)
# Convert the response column in train and test datasets to a factor
train[,y] <- as.factor(train[,y])
blend[,y] <- as.factor(blend[,y])
# Set number of folds for base learners
nfolds <- 3
# Train & Cross-validate a GBM model
my_gbm <- h2o.gbm(x = x,
y = y,
training_frame = train,
distribution = "bernoulli",
ntrees = 10,
nfolds = nfolds,
keep_cross_validation_predictions = TRUE,
seed = 1)
# Train & Cross-validate an RF model
my_rf <- h2o.randomForest(x = x,
y = y,
training_frame = train,
ntrees = 10,
nfolds = nfolds,
keep_cross_validation_predictions = TRUE,
seed = 1)
# Train a stacked ensemble using a blending frame
stack <- h2o.stackedEnsemble(x = x,
y = y,
base_models = list(my_gbm, my_rf),
training_frame = train,
blending_frame = blend,
seed = 1)
h2o.auc(h2o.performance(stack, blend))
# [1] 0.7576039
import h2o
from h2o.estimators.random_forest import H2ORandomForestEstimator
from h2o.estimators.gbm import H2OGradientBoostingEstimator
from h2o.estimators.stackedensemble import H2OStackedEnsembleEstimator
h2o.init()
# import the higgs_train_5k train and test datasets
higgs = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/testng/higgs_train_5k.csv")
# split the dataset into training and blending
train, blend = higgs.split_frame(ratios = [.8], seed = 1234)
# Identify predictors and response
x = train.columns
y = "response"
x.remove(y)
# Convert the response column in train and test datasets to a factor
train[y] = train[y].asfactor()
blend[y] = blend[y].asfactor()
# Set number of folds for base learners
nfolds = 3
# Train and cross-validate a GBM model
my_gbm = H2OGradientBoostingEstimator(distribution="bernoulli",
ntrees=10,
nfolds=nfolds,
fold_assignment="Modulo",
keep_cross_validation_predictions=True,
seed=1)
my_gbm.train(x=x, y=y, training_frame=train)
# Train and cross-validate an RF model
my_rf = H2ORandomForestEstimator(ntrees=50,
nfolds=nfolds,
fold_assignment="Modulo",
keep_cross_validation_predictions=True,
seed=1)
my_rf.train(x=x, y=y, training_frame=train)
# Train a stacked ensemble using a blending frame
stack_blend = H2OStackedEnsembleEstimator(base_models=[my_gbm, my_rf],
seed=1)
stack_blend.train(x=x, y=y, training_frame=train, blending_frame=blend)
stack_blend.model_performance(blend).auc()
# 0.7736312597328088