pca_impl
¶
- Available in: PCA
- Hyperparameter: no
Description¶
The pca_impl
parameter allows you to specify PCA implementations for Singular-Value Decomposition (SVD) or Eigenvalue Decomposition (EVD), using either the Matrix Toolkit Java (MTJ) libary or the Java Matrix (JAMA) library.
Available options include:
- mtj_evd_densematrix: Eigenvalue decompositions for dense matrix using MTJ
- mtj_evd_symmmatrix: Eigenvalue decompositions for symmetric matrix using MTJ (default)
- mtj_svd_densematrix: Singular-value decompositions for dense matrix using MTJ
- jama: Eigenvalue decompositions for dense matrix using JAMA
Example¶
library(h2o)
h2o.init()
# Load the US Arrests dataset
arrestsH2O = h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv")
# Train using the JAMA PCA implementation option
model <- h2o.prcomp(training_frame=arrestsH2O, k=4, pca_impl="JAMA", seed=1234)
# View the importance of components
model@model$importance
Importance of components:
pc1 pc2 pc3 pc4
Standard deviation 202.723056 27.832264 6.523048 2.581365
Proportion of Variance 0.980347 0.018479 0.001015 0.000159
Cumulative Proportion 0.980347 0.998826 0.999841 1.000000
# View the eigenvectors
model@model$eigenvectors
Rotation:
pc1 pc2 pc3 pc4
Murder -0.042392 -0.016163 0.065884 0.996795
Assault -0.943957 -0.320686 -0.066552 -0.040946
UrbanPop -0.308428 0.938459 -0.154967 0.012343
Rape -0.109637 0.127257 0.983471 -0.067603
import(h2o)
h2o.init()
from h2o.estimators.pca import H2OPrincipalComponentAnalysisEstimator as H2OPCA
# Load the US Arrests dataset
arrestsH2O = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv")
# Train using the jama PCA implementation option
impl = "jama"
model = H2OPCA(k = 4, pca_impl=impl, seed=1234)
model.train(x=list(range(4)), training_frame=arrestsH2O)
# View the importance of components
model.varimp(use_pandas=False)
[(u'Standard deviation', 202.7230564425318, 27.832263730019577, 6.523048232982174, 2.5813652317810947),
(u'Proportion of Variance', 0.980347353161874, 0.0184786717900806, 0.0010150206303792286, 0.00015895441766549314),
(u'Cumulative Proportion', 0.980347353161874, 0.9988260249519546, 0.9998410455823339, 0.9999999999999993)]
# View the eigenvectors
model.rotation()
Rotation:
pc1 pc2 pc3 pc4
-------- ---------- ---------- ---------- ----------
Murder -0.0423918 -0.0161626 0.0658843 0.996795
Assault -0.943957 -0.320686 -0.0665517 -0.0409457
UrbanPop -0.308428 0.938459 -0.154967 0.0123426
Rape -0.109637 0.127257 0.983471 -0.0676028