public class NeuralNet extends Job.ValidatedJob
| Modifier and Type | Class and Description |
|---|---|
static class |
NeuralNet.Activation
Activation functions
|
static class |
NeuralNet.Errors |
static class |
NeuralNet.ExecutionMode |
static class |
NeuralNet.InitialWeightDistribution |
static class |
NeuralNet.Loss
Loss functions
CrossEntropy is recommended
|
static class |
NeuralNet.NeuralNetModel |
static class |
NeuralNet.NeuralNetScore |
Job.ValidatedJob.Response2CMAdaptorJob.ChunkProgress, Job.ChunkProgressJob, Job.ColumnsJob, Job.ColumnsResJob, Job.Fail, Job.FrameJob, Job.JobCancelledException, Job.JobHandle, Job.JobState, Job.List, Job.ModelJob, Job.ModelJobWithoutClassificationField, Job.Progress, Job.ProgressMonitor, Job.ValidatedJobRequest2.ColumnSelect, Request2.Dependent, Request2.DoClassBoolean, Request2.DRFCopyDataBoolean, Request2.MultiVecSelect, Request2.MultiVecSelectType, Request2.TypeaheadKey, Request2.VecClassSelect, Request2.VecSelectRequest.API, Request.Default, Request.Filter, Request.Validator<V>RequestBuilders.ArrayBuilder, RequestBuilders.ArrayHeaderRowBuilder, RequestBuilders.ArrayRowBuilder, RequestBuilders.ArrayRowElementBuilder, RequestBuilders.ArrayRowSingleColBuilder, RequestBuilders.BooleanStringBuilder, RequestBuilders.Builder, RequestBuilders.ElementBuilder, RequestBuilders.HideBuilder, RequestBuilders.KeyCellBuilder, RequestBuilders.KeyElementBuilder, RequestBuilders.KeyLinkElementBuilder, RequestBuilders.KeyMinAvgMaxBuilder, RequestBuilders.NoCaptionObjectBuilder, RequestBuilders.ObjectBuilder, RequestBuilders.PaginatedTable, RequestBuilders.PreFormattedBuilder, RequestBuilders.Response, RequestBuilders.ResponseInfo, RequestBuilders.WarningCellBuilderRequestArguments.Argument<T>, RequestArguments.Bool, RequestArguments.ClassifyBool, RequestArguments.DRFCopyDataBool, RequestArguments.EnumArgument<T extends java.lang.Enum<T>>, RequestArguments.ExistingFile, RequestArguments.FrameClassVec, RequestArguments.FrameKeyMultiVec, RequestArguments.FrameKeyVec, RequestArguments.GeneralFile, RequestArguments.H2OExistingKey, RequestArguments.H2OIllegalArgumentException, RequestArguments.H2OKey, RequestArguments.H2OKey2, RequestArguments.InputCheckBox, RequestArguments.InputSelect<T>, RequestArguments.InputText<T>, RequestArguments.Int, RequestArguments.LongInt, RequestArguments.MultipleSelect<T>, RequestArguments.MultipleText<T>, RequestArguments.NumberSequence, RequestArguments.NumberSequenceFloat, RequestArguments.Real, RequestArguments.Record<T>, RequestArguments.RSeq, RequestArguments.RSeqFloat, RequestArguments.Str, RequestArguments.StringList, RequestArguments.TypeaheadInputText<T>RequestStatics.RequestTypeConstants.Extensions, Constants.Schemes, Constants.Suffixes| Modifier and Type | Field and Description |
|---|---|
NeuralNet.Activation |
activation |
boolean |
diagnostics |
static DocGen.FieldDoc[] |
DOC_FIELDS |
static java.lang.String |
DOC_GET |
double |
epochs |
boolean |
expert_mode |
boolean |
fast_mode |
int[] |
hidden |
NeuralNet.InitialWeightDistribution |
initial_weight_distribution |
double |
initial_weight_scale |
double |
input_dropout_ratio |
double |
l1 |
double |
l2 |
NeuralNet.Loss |
loss |
double |
max_w2 |
NeuralNet.ExecutionMode |
mode |
long |
momentum_ramp |
double |
momentum_stable |
double |
momentum_start |
double |
rate |
double |
rate_annealing |
double |
rate_decay |
static boolean |
running |
double |
score_interval |
long |
score_training |
long |
score_validation |
long |
seed |
long |
warmup_samples |
_cmDomain, _cv_count, _names, _responseName, _sourceResponseDomain, _train, _valid, _validResponse, _validResponseDomain, keep_cross_validation_splits, n_folds, validation, xval_modelsclassificationresponsecols, ignored_cols, ignored_cols_by_namesource_cv, _fjtask, description, destination_key, end_time, exception, job_key, LIST, start_time, state_parms, response_info_requestHelp, SUPPORTS_ONLY_V1, SUPPORTS_ONLY_V2, SUPPORTS_V1_V2ARRAY_BUILDER, ARRAY_HEADER_ROW_BUILDER, ARRAY_ROW_BUILDER, ARRAY_ROW_ELEMENT_BUILDER, ARRAY_ROW_SINGLECOL_BUILDER, ELEMENT_BUILDER, GSON_BUILDER, OBJECT_BUILDER, ROOT_OBJECT_queryHtml_argumentsALPHA, ARGUMENTS, AUC, BASE, BEST_THRESHOLD, BETA_EPS, BIN_LIMIT, BROWSE, BUCKET, BUILT_IN_KEY_JOBS, CANCELLED, CARDINALITY, CASE, CASE_MODE, CHUNK, CLASS, CLOUD_HEALTH, CLOUD_NAME, CLOUD_SIZE, CLOUD_UPTIME_MILLIS, CLUSTERS, COEFFICIENTS, COL_INDEX, COLS, COLUMN_NAME, COLUMNS_DISPLAY, CONSENSUS, CONTENTS, COUNT, DATA_KEY, DEPTH, DESCRIPTION, DEST_KEY, DTHRESHOLDS, ELAPSED, END_TIME, ENUM_DOMAIN_SIZE, ERROR, ESCAPE_NAN, EXCLUSIVE_SPLIT_LIMIT, EXPRESSION, FAILED, FAMILY, FEATURES, FILE, FILES, FILTER, FIRST_CHUNK, FJ_QUEUE_HI, FJ_QUEUE_LO, FJ_THREADS_HI, FJ_THREADS_LO, FREE_DISK, FREE_MEM, GFLOPS, HEADER, HEIGHT, HELP, IGNORE, ITEMS, ITERATIVE_CM, JOB, JOB_KEY, JOBS, JSON_H2O, KEY, KEYS, LAMBDA, LAST_CONTACT, LIMIT, LINK, LOCKED, MAX, MAX_DISK, MAX_ITER, MAX_MEM, MAX_ROWS, MEAN, MEM_BW, MIN, MODEL_KEY, MODELS, MORE, MTRY, MTRY_NODES, NAME, NEG_X, NO_CM, NODE, NODE_HEALTH, NODE_NAME, NODES, NORMALIZE, NUM_COLS, NUM_CPUS, NUM_FAILED, NUM_KEYS, NUM_MISSING_VALUES, NUM_ROWS, NUM_SUCCEEDED, NUM_TREES, OBJECT, OFFSET, OOBEE, PARALLEL, PARSER_TYPE, PATH, PREVIEW, PREVIOUS_MODEL_KEY, PRIOR, PROGRESS, PROGRESS_KEY, PROGRESS_TOTAL, REDIRECT, REDIRECT_ARGS, REPLICATION_FACTOR, REQUEST_TIME, RESPONSE, RHO, ROW, ROW_SIZE, ROWS, RPCS, SAMPLE, SAMPLING_STRATEGY, SCALE, SEED, SENT_ROWS, SEPARATOR, SIZE, SOURCE_KEY, STACK_TRACES, START_TIME, STAT_TYPE, STATUS, STEP, STRATA_SAMPLES, SUCCEEDED, SYSTEM_LOAD, TASK_KEY, TCPS_ACTIVE, TCPS_DUTY, TIME, TO_ENUM, TOT_MEM, TREE_COUNT, TREE_DEPTH, TREE_LEAVES, TREE_NUM, TREES, TWEEDIE_POWER, TYPE, URL, USE_NON_LOCAL_DATA, VALUE, VALUE_SIZE, VALUE_TYPE, VARIANCE, VERSION, VIEW, WARNINGS, WEIGHT, WEIGHTS, WIDTH, X, XVAL, Y| Constructor and Description |
|---|
NeuralNet() |
| Modifier and Type | Method and Description |
|---|---|
static NeuralNet.Errors |
eval(Layer[] ls,
long n,
long[][] cm) |
static NeuralNet.Errors |
eval(Layer[] ls,
Vec[] vecs,
Vec resp,
long n,
long[][] cm) |
void |
execImpl()
The real implementation which should be provided by ancestors.
|
static java.lang.String |
link(Key k,
java.lang.String content) |
float |
progress()
Return progress of this job.
|
protected void |
queryArgumentValueSet(RequestArguments.Argument arg,
java.util.Properties inputArgs)
Helper to handle arguments based on existing input values
|
static void |
reChunk(Vec[] vecs)
Makes sure small datasets are spread over enough chunks to parallelize training.
|
protected RequestBuilders.Response |
redirect() |
protected void |
registered(RequestServer.API_VERSION ver)
Helper to specify which arguments trigger a refresh on change
|
java.lang.String |
speedDescription()
Description of a speed criteria: msecs/frob
|
long |
speedValue()
Value of the described speed criteria: msecs/frob
|
boolean |
toHTML(java.lang.StringBuilder sb) |
crossValidate, cv_progress, genericCrossValidation, getCMDomain, getOrigValidation, getValidAdaptor, getValidation, getVectorDomain, hasValidation, init, prepareValidationWithModel, toJSONselectFrame, selectVecsall, cancel, cancel, cancel, checkIdx, defaultDestKey, defaultJobKey, dest, findJob, findJobByDest, fork, get, getState, gridParallelism, hygiene, hygiene, invoke, isCancelledOrCrashed, isCrashed, isDone, isEnded, isRunning, isRunning, onCancelled, remove, runTimeMs, self, serve, start, waitUntilJobEnded, waitUntilJobEndedcreate, fillResponseInfo, filterNaCols, input, logStart, makeJsonBox, serveGrid, servePublic, set, split, superServeGrid, supportedVersions, toJSON, toStringaddToNavbar, addToNavbar, addToNavbar, DocExampleFail, DocExampleSucc, href, href, hrefType, HTMLHelp, htmlTemplate, initializeNavBar, log, mapTypeahead, ReSTHelp, serve, serveJava, serveResponse, toDocGET, toJava, wrap, wrap, wrap, writeJSONFieldsbuild, buildJSONResponseBox, buildResponseHeader, namebuildQuery, checkArgumentsarguments, argumentsToJson, frameColumnNameToIndexcheckJsonName, encodeRedirectArgs, JSON2HTML, jsonError, requestName, Str2JSONclone, frozenType, init, newInstance, read, toDocField, write, writeJSONpublic static DocGen.FieldDoc[] DOC_FIELDS
public static final java.lang.String DOC_GET
@Request.API(help="Execution Mode", filter=Request.Default.class, json=true) public NeuralNet.ExecutionMode mode
@Request.API(help="Activation function", filter=Request.Default.class, json=true) public NeuralNet.Activation activation
@Request.API(help="Input layer dropout ratio", filter=Request.Default.class, dmin=0.0, dmax=1.0, json=true) public double input_dropout_ratio
@Request.API(help="Hidden layer sizes, e.g. 1000, 1000. Grid search: (100, 100), (200, 200)", filter=Request.Default.class, json=true) public int[] hidden
@Request.API(help="Learning rate (higher => less stable, lower => slower convergence)", filter=Request.Default.class, dmin=0.0, dmax=1.0, json=true) public double rate
@Request.API(help="Learning rate annealing: rate / (1 + rate_annealing * samples)", filter=Request.Default.class, dmin=0.0, dmax=1.0, json=true) public double rate_annealing
@Request.API(help="L1 regularization, can add stability", filter=Request.Default.class, dmin=0.0, dmax=1.0, json=true) public double l1
@Request.API(help="L2 regularization, can add stability", filter=Request.Default.class, dmin=0.0, dmax=1.0, json=true) public double l2
@Request.API(help="Initial momentum at the beginning of training", filter=Request.Default.class, dmin=0.0, json=true) public double momentum_start
@Request.API(help="Number of training samples for which momentum increases", filter=Request.Default.class, lmin=0L, json=true) public long momentum_ramp
@Request.API(help="Final momentum after the ramp is over", filter=Request.Default.class, dmin=0.0, json=true) public double momentum_stable
@Request.API(help="How many times the dataset should be iterated (streamed), can be less than 1.0", filter=Request.Default.class, dmin=0.0, json=true) public double epochs
@Request.API(help="Seed for random numbers (reproducible results for single-threaded only, cf. Hogwild)", filter=Request.Default.class, json=true) public long seed
@Request.API(help="Enable expert mode", filter=Request.Default.class, json=true) public boolean expert_mode
@Request.API(help="Initial Weight Distribution", filter=Request.Default.class, json=true) public NeuralNet.InitialWeightDistribution initial_weight_distribution
@Request.API(help="Uniform: -value...value, Normal: stddev)", filter=Request.Default.class, dmin=0.0, json=true) public double initial_weight_scale
@Request.API(help="Loss function", filter=Request.Default.class, json=true) public NeuralNet.Loss loss
@Request.API(help="Learning rate decay factor between layers (N-th layer: rate*alpha^(N-1))", filter=Request.Default.class, dmin=0.0, json=true) public double rate_decay
@Request.API(help="Constraint for squared sum of incoming weights per unit", filter=Request.Default.class, json=true) public double max_w2
@Request.API(help="Number of samples to train with non-distributed mode for improved stability", filter=Request.Default.class, lmin=0L, json=true) public long warmup_samples
@Request.API(help="Number of training set samples for scoring (0 for all)", filter=Request.Default.class, lmin=0L, json=true) public long score_training
@Request.API(help="Number of validation set samples for scoring (0 for all)", filter=Request.Default.class, lmin=0L, json=true) public long score_validation
@Request.API(help="Minimum interval (in seconds) between scoring", filter=Request.Default.class, dmin=0.0, json=true) public double score_interval
@Request.API(help="Enable diagnostics for hidden layers", filter=Request.Default.class, json=true) public boolean diagnostics
@Request.API(help="Enable fast mode (minor approximation in back-propagation)", filter=Request.Default.class, json=true) public boolean fast_mode
public static volatile boolean running
protected void registered(RequestServer.API_VERSION ver)
Job.ValidatedJobregistered in class Job.ValidatedJobprotected void queryArgumentValueSet(RequestArguments.Argument arg, java.util.Properties inputArgs)
Job.ValidatedJobqueryArgumentValueSet in class Job.ValidatedJobpublic final void execImpl()
Funcpublic float progress()
Jobpublic static NeuralNet.Errors eval(Layer[] ls, Vec[] vecs, Vec resp, long n, long[][] cm)
public static NeuralNet.Errors eval(Layer[] ls, long n, long[][] cm)
protected RequestBuilders.Response redirect()
public static java.lang.String link(Key k, java.lang.String content)
public java.lang.String speedDescription()
JobspeedDescription in class Jobpublic long speedValue()
JobspeedValue in class Jobpublic static void reChunk(Vec[] vecs)