| Class | Description |
|---|---|
| ConfusionMatrix | |
| CreateFrame |
Create a Frame from scratch
If randomize = true, then the frame is filled with Random values.
|
| FrameExtractor |
Support class for extracting things from frame.
|
| FrameSplitter |
Frame splitter function to divide given frame into
multiple partitions based on given ratios.
|
| FrameTask<T extends FrameTask<T>> | |
| FrameTask.DataInfo | |
| GridSearch | |
| GridSearch.GridSearchProgress | |
| InsertMissingValues |
Insert missing values into an existing frame (overwrite in-place).
|
| KMeans2 |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf http://www.youtube.com/watch?v=cigXAxV3XcY |
| KMeans2.KMeans2Model | |
| KMeans2.KMeans2ModelView | |
| KMeans2.KMeans2Progress | |
| KMeans2.Lloyds | |
| Layer |
Neural network layer.
|
| Layer.Input | |
| Layer.Linear |
Linear output layer is used for regression
Rows with missing values in the response column will be ignored
|
| Layer.Maxout | |
| Layer.MaxoutDropout | |
| Layer.Output | |
| Layer.Rectifier | |
| Layer.RectifierDropout | |
| Layer.RectifierPrime | |
| Layer.Softmax |
Softmax output layer is used for classification
Rows with missing values in the response column will be ignored
|
| Layer.Tanh | |
| Layer.TanhDropout | |
| Layer.TanhPrime |
Apply tanh to the weights' transpose.
|
| Layer.VecLinear | |
| Layer.VecsInput | |
| Layer.VecSoftmax | |
| LR2 | |
| LR2.CalcRegressionTask | |
| LR2.CalcSquareErrorsTasks | |
| LR2.CalcSumsTask | |
| NeuralNet |
Neural network.
|
| NeuralNet.Errors | |
| NeuralNet.NeuralNetModel | |
| NeuralNet.NeuralNetScore | |
| NFoldFrameExtractor | |
| OneHot | |
| ParamsSearch |
Looks for parameters on a set of objects and perform random search.
|
| Quantiles |
Quantile of a column.
|
| Quantiles.BinTask2 | |
| ReBalance |
Rebalance a Frame
|
| ShuffleTask |
Simple shuffle task based on Fisher/Yates algo.
|
| Summary2 |
Summary of a column.
|
| Summary2.BasicStat | |
| Summary2.PrePass | |
| Summary2.SummaryPerRow | |
| Summary2.SummaryTask2 | |
| Trainer |
Trains a neural network.
|
| Trainer.Base | |
| Trainer.Direct |
Trains NN on current thread.
|
| Trainer.MapReduce |
Distributed trainer.
|
| Trainer.OpenCL |
GPU based trainer.
|
| Trainer.Threaded |
Runs several trainers in parallel on the same weights, using threads.
|
| VarImp | |
| VarImp.VarImpMDA |
Variable importance measured as mean decrease in accuracy.
|
| VarImp.VarImpRI |
Variable importance measured as relative influence.
|
| Enum | Description |
|---|---|
| ConfusionMatrix.ErrMetric | |
| FrameTask.DataInfo.TransformType | |
| KMeans2.Initialization | |
| NeuralNet.Activation |
Activation functions
|
| NeuralNet.ExecutionMode | |
| NeuralNet.InitialWeightDistribution | |
| NeuralNet.Loss |
Loss functions
CrossEntropy is recommended
|
| Annotation Type | Description |
|---|---|
| ParamsSearch.Ignore | |
| ParamsSearch.Info |