public class DeepLearning extends hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
Modifier and Type | Class and Description |
---|---|
class |
DeepLearning.DeepLearningDriver |
Constructor and Description |
---|
DeepLearning(boolean startup_once) |
DeepLearning(DeepLearningModel.DeepLearningParameters parms)
Main constructor from Deep Learning parameters
|
DeepLearning(DeepLearningModel.DeepLearningParameters parms,
water.Key<DeepLearningModel> key) |
Modifier and Type | Method and Description |
---|---|
hex.ModelCategory[] |
can_build()
Types of models we can build with DeepLearning
|
protected void |
checkMemoryFootPrint() |
void |
cv_computeAndSetOptimalParameters(hex.ModelBuilder[] cvModelBuilders) |
protected int |
desiredChunks(water.fvec.Frame original_fr,
boolean local) |
hex.ToEigenVec |
getToEigenVec() |
boolean |
haveMojo() |
boolean |
havePojo() |
void |
init(boolean expensive)
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
|
boolean |
isSupervised() |
protected int |
nModelsInParallel() |
protected water.fvec.Frame |
rebalance(water.fvec.Frame original_fr,
boolean local,
java.lang.String name) |
protected DeepLearning.DeepLearningDriver |
trainModelImpl() |
algoName, algos, builderVisibility, checkDistributions, clearInitState, clearValidationErrors, computeCrossValidation, computePriorClassDistribution, cv_AssignFold, cv_buildModels, cv_mainModelScores, cv_makeFramesAndBuilders, cv_makeWeights, cv_scoreCVModels, defaultKey, dest, error_count, error, get, hasFoldCol, hasOffsetCol, hasWeightCol, hide, ignoreBadColumns, ignoreConstColumns, ignoreInvalidColumns, ignoreStringColumns, info, init_adaptFrameToTrain, isClassifier, isStopped, javaName, logMe, make, message, nclasses, nFoldCV, nFoldWork, numSpecialCols, paramName, response, schemaDirectory, separateFeatureVecs, setTrain, shouldReorder, specialColNames, stop_requested, timeout, train, trainModel, trainModelNested, valid, validationErrors, vresponse, warn
public DeepLearning(DeepLearningModel.DeepLearningParameters parms)
public DeepLearning(DeepLearningModel.DeepLearningParameters parms, water.Key<DeepLearningModel> key)
public DeepLearning(boolean startup_once)
public hex.ModelCategory[] can_build()
can_build
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
public boolean havePojo()
havePojo
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
public boolean haveMojo()
haveMojo
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
public hex.ToEigenVec getToEigenVec()
getToEigenVec
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
public boolean isSupervised()
isSupervised
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
protected int nModelsInParallel()
nModelsInParallel
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
protected DeepLearning.DeepLearningDriver trainModelImpl()
trainModelImpl
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
public void init(boolean expensive)
init
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
protected void checkMemoryFootPrint()
checkMemoryFootPrint
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
public void cv_computeAndSetOptimalParameters(hex.ModelBuilder[] cvModelBuilders)
cv_computeAndSetOptimalParameters
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
protected water.fvec.Frame rebalance(water.fvec.Frame original_fr, boolean local, java.lang.String name)
rebalance
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>
protected int desiredChunks(water.fvec.Frame original_fr, boolean local)
desiredChunks
in class hex.ModelBuilder<DeepLearningModel,DeepLearningModel.DeepLearningParameters,DeepLearningModel.DeepLearningModelOutput>